Home Metamath Proof ExplorerTheorem List (p. 78 of 429) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27903) Hilbert Space Explorer (27904-29428) Users' Mathboxes (29429-42879)

Theorem List for Metamath Proof Explorer - 7701-7800   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremom00el 7701 The product of two nonzero ordinal numbers is nonzero. (Contributed by NM, 28-Dec-2004.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·𝑜 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)))

Theoremomordlim 7702* Ordering involving the product of a limit ordinal. Proposition 8.23 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.)
(((𝐴 ∈ On ∧ (𝐵𝐷 ∧ Lim 𝐵)) ∧ 𝐶 ∈ (𝐴 ·𝑜 𝐵)) → ∃𝑥𝐵 𝐶 ∈ (𝐴 ·𝑜 𝑥))

Theoremomlimcl 7703 The product of any nonzero ordinal with a limit ordinal is a limit ordinal. Proposition 8.24 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.)
(((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·𝑜 𝐵))

Theoremodi 7704 Distributive law for ordinal arithmetic (left-distributivity). Proposition 8.25 of [TakeutiZaring] p. 64. (Contributed by NM, 26-Dec-2004.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))

Theoremomass 7705 Multiplication of ordinal numbers is associative. Theorem 8.26 of [TakeutiZaring] p. 65. (Contributed by NM, 28-Dec-2004.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))

Theoremoneo 7706 If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → ¬ suc 𝐶 = (2𝑜 ·𝑜 𝐵))

Theoremomeulem1 7707* Lemma for omeu 7710: existence part. (Contributed by Mario Carneiro, 28-Feb-2013.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵)

Theoremomeulem2 7708 Lemma for omeu 7710: uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 29-May-2015.)
(((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))

Theoremomopth2 7709 An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015.)
(((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (((𝐴 ·𝑜 𝐵) +𝑜 𝐶) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))

Theoremomeu 7710* The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑧𝑥 ∈ On ∃𝑦𝐴 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝐵))

Theoremoen0 7711 Ordinal exponentiation with a nonzero mantissa is nonzero. Proposition 8.32 of [TakeutiZaring] p. 67. (Contributed by NM, 4-Jan-2005.)
(((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝐵))

Theoremoeordi 7712 Ordering law for ordinal exponentiation. Proposition 8.33 of [TakeutiZaring] p. 67. (Contributed by NM, 5-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2𝑜)) → (𝐴𝐵 → (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝐵)))

Theoremoeord 7713 Ordering property of ordinal exponentiation. Corollary 8.34 of [TakeutiZaring] p. 68 and its converse. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2𝑜)) → (𝐴𝐵 ↔ (𝐶𝑜 𝐴) ∈ (𝐶𝑜 𝐵)))

Theoremoecan 7714 Left cancellation law for ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝑜 𝐵) = (𝐴𝑜 𝐶) ↔ 𝐵 = 𝐶))

Theoremoeword 7715 Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2𝑜)) → (𝐴𝐵 ↔ (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵)))

Theoremoewordi 7716 Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.)
(((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶𝑜 𝐴) ⊆ (𝐶𝑜 𝐵)))

Theoremoewordri 7717 Weak ordering property of ordinal exponentiation. Proposition 8.35 of [TakeutiZaring] p. 68. (Contributed by NM, 6-Jan-2005.)
((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴𝑜 𝐶) ⊆ (𝐵𝑜 𝐶)))

Theoremoeworde 7718 Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴𝑜 𝐵))

Theoremoeordsuc 7719 Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.)
((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴𝑜 suc 𝐶) ∈ (𝐵𝑜 suc 𝐶)))

Theoremoelim2 7720* Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of [Mendelson] p. 250. (Contributed by NM, 6-Jan-2005.)
((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴𝑜 𝐵) = 𝑥 ∈ (𝐵 ∖ 1𝑜)(𝐴𝑜 𝑥))

Theoremoeoalem 7721 Lemma for oeoa 7722. (Contributed by Eric Schmidt, 26-May-2009.)
𝐴 ∈ On    &   ∅ ∈ 𝐴    &   𝐵 ∈ On       (𝐶 ∈ On → (𝐴𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝐶)))

Theoremoeoa 7722 Sum of exponents law for ordinal exponentiation. Theorem 8R of [Enderton] p. 238. Also Proposition 8.41 of [TakeutiZaring] p. 69. (Contributed by Eric Schmidt, 26-May-2009.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝐶)))

Theoremoeoelem 7723 Lemma for oeoe 7724. (Contributed by Eric Schmidt, 26-May-2009.)
𝐴 ∈ On    &   ∅ ∈ 𝐴       ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝑜 𝐵) ↑𝑜 𝐶) = (𝐴𝑜 (𝐵 ·𝑜 𝐶)))

Theoremoeoe 7724 Product of exponents law for ordinal exponentiation. Theorem 8S of [Enderton] p. 238. Also Proposition 8.42 of [TakeutiZaring] p. 70. (Contributed by Eric Schmidt, 26-May-2009.)
((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝑜 𝐵) ↑𝑜 𝐶) = (𝐴𝑜 (𝐵 ·𝑜 𝐶)))

Theoremoelimcl 7725 The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.)
((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴𝑜 𝐵))

Theoremoeeulem 7726* Lemma for oeeu 7728. (Contributed by Mario Carneiro, 28-Feb-2013.)
𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}       ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝑋 ∈ On ∧ (𝐴𝑜 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝑋)))

Theoremoeeui 7727* The division algorithm for ordinal exponentiation. (This version of oeeu 7728 gives an explicit expression for the unique solution of the equation, in terms of the solution 𝑃 to omeu 7710.) (Contributed by Mario Carneiro, 25-May-2015.)
𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}    &   𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))    &   𝑌 = (1st𝑃)    &   𝑍 = (2nd𝑃)       ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜) ∧ 𝐸 ∈ (𝐴𝑜 𝐶)) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))

Theoremoeeu 7728* The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015.)
((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1𝑜)∃𝑧 ∈ (𝐴𝑜 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑥) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))

2.4.19  Natural number arithmetic

Theoremnna0 7729 Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.)
(𝐴 ∈ ω → (𝐴 +𝑜 ∅) = 𝐴)

Theoremnnm0 7730 Multiplication with zero. Theorem 4J(A1) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.)
(𝐴 ∈ ω → (𝐴 ·𝑜 ∅) = ∅)

Theoremnnasuc 7731 Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))

Theoremnnmsuc 7732 Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 suc 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))

Theoremnnesuc 7733 Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑜 suc 𝐵) = ((𝐴𝑜 𝐵) ·𝑜 𝐴))

Theoremnna0r 7734 Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r 7663) so that we can avoid ax-rep 4804, which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
(𝐴 ∈ ω → (∅ +𝑜 𝐴) = 𝐴)

Theoremnnm0r 7735 Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
(𝐴 ∈ ω → (∅ ·𝑜 𝐴) = ∅)

Theoremnnacl 7736 Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω)

Theoremnnmcl 7737 Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) ∈ ω)

Theoremnnecl 7738 Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝑜 𝐵) ∈ ω)

Theoremnnacli 7739 ω is closed under addition. Inference form of nnacl 7736. (Contributed by Scott Fenton, 20-Apr-2012.)
𝐴 ∈ ω    &   𝐵 ∈ ω       (𝐴 +𝑜 𝐵) ∈ ω

Theoremnnmcli 7740 ω is closed under multiplication. Inference form of nnmcl 7737. (Contributed by Scott Fenton, 20-Apr-2012.)
𝐴 ∈ ω    &   𝐵 ∈ ω       (𝐴 ·𝑜 𝐵) ∈ ω

Theoremnnarcl 7741 Reverse closure law for addition of natural numbers. Exercise 1 of [TakeutiZaring] p. 62 and its converse. (Contributed by NM, 12-Dec-2004.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))

Theoremnnacom 7742 Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴))

Theoremnnaordi 7743 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))

Theoremnnaord 7744 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))

Theoremnnaordr 7745 Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐴 +𝑜 𝐶) ∈ (𝐵 +𝑜 𝐶)))

Theoremnnawordi 7746 Adding to both sides of an inequality in ω. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝐶) ⊆ (𝐵 +𝑜 𝐶)))

Theoremnnaass 7747 Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) +𝑜 𝐶) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶)))

Theoremnndi 7748 Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))

Theoremnnmass 7749 Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))

Theoremnnmsucr 7750 Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))

Theoremnnmcom 7751 Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴))

Theoremnnaword 7752 Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵)))

Theoremnnacan 7753 Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) ↔ 𝐵 = 𝐶))

Theoremnnaword1 7754 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐴 +𝑜 𝐵))

Theoremnnaword2 7755 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐵 +𝑜 𝐴))

Theoremnnmordi 7756 Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
(((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))

Theoremnnmord 7757 Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))

Theoremnnmword 7758 Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
(((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))

Theoremnnmcan 7759 Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
(((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) ↔ 𝐵 = 𝐶))

Theoremnnmwordi 7760 Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))

Theoremnnmwordri 7761 Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by Mario Carneiro, 17-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))

Theoremnnawordex 7762* Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +𝑜 𝑥) = 𝐵))

Theoremnnaordex 7763* Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))

Theorem1onn 7764 One is a natural number. (Contributed by NM, 29-Oct-1995.)
1𝑜 ∈ ω

Theorem2onn 7765 The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.)
2𝑜 ∈ ω

Theorem3onn 7766 The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
3𝑜 ∈ ω

Theorem4onn 7767 The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
4𝑜 ∈ ω

Theoremoaabslem 7768 Lemma for oaabs 7769. (Contributed by NM, 9-Dec-2004.)
((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +𝑜 ω) = ω)

Theoremoaabs 7769 Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of [TakeutiZaring] p. 59. (Contributed by NM, 9-Dec-2004.) (Proof shortened by Mario Carneiro, 29-May-2015.)
(((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +𝑜 𝐵) = 𝐵)

Theoremoaabs2 7770 The absorption law oaabs 7769 is also a property of higher powers of ω. (Contributed by Mario Carneiro, 29-May-2015.)
(((𝐴 ∈ (ω ↑𝑜 𝐶) ∧ 𝐵 ∈ On) ∧ (ω ↑𝑜 𝐶) ⊆ 𝐵) → (𝐴 +𝑜 𝐵) = 𝐵)

Theoremomabslem 7771 Lemma for omabs 7772. (Contributed by Mario Carneiro, 30-May-2015.)
((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·𝑜 ω) = ω)

Theoremomabs 7772 Ordinal multiplication is also absorbed by powers of ω. (Contributed by Mario Carneiro, 30-May-2015.)
(((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (ω ↑𝑜 𝐵))

Theoremnnm1 7773 Multiply an element of ω by 1𝑜. (Contributed by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ ω → (𝐴 ·𝑜 1𝑜) = 𝐴)

Theoremnnm2 7774 Multiply an element of ω by 2𝑜. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ ω → (𝐴 ·𝑜 2𝑜) = (𝐴 +𝑜 𝐴))

Theoremnn2m 7775 Multiply an element of ω by 2𝑜. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ ω → (2𝑜 ·𝑜 𝐴) = (𝐴 +𝑜 𝐴))

Theoremnnneo 7776 If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → ¬ suc 𝐶 = (2𝑜 ·𝑜 𝐵))

Theoremnneob 7777* A natural number is even iff its successor is odd. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
(𝐴 ∈ ω → (∃𝑥 ∈ ω 𝐴 = (2𝑜 ·𝑜 𝑥) ↔ ¬ ∃𝑥 ∈ ω suc 𝐴 = (2𝑜 ·𝑜 𝑥)))

Theoremomsmolem 7778* Lemma for omsmo 7779. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.)
(𝑦 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))

Theoremomsmo 7779* A strictly monotonic ordinal function on the set of natural numbers is one-to-one. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.)
(((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω–1-1𝐴)

Theoremomopthlem1 7780 Lemma for omopthi 7782. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
𝐴 ∈ ω    &   𝐶 ∈ ω       (𝐴𝐶 → ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶))

Theoremomopthlem2 7781 Lemma for omopthi 7782. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
𝐴 ∈ ω    &   𝐵 ∈ ω    &   𝐶 ∈ ω    &   𝐷 ∈ ω       ((𝐴 +𝑜 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·𝑜 𝐶) +𝑜 𝐷) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵))

Theoremomopthi 7782 An ordered pair theorem for ω. Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 13097. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
𝐴 ∈ ω    &   𝐵 ∈ ω    &   𝐶 ∈ ω    &   𝐷 ∈ ω       ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Theoremomopth 7783 An ordered pair theorem for finite integers. Analogous to nn0opthi 13097. (Contributed by Scott Fenton, 1-May-2012.)
(((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ ω)) → ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

2.4.20  Equivalence relations and classes

Syntaxwer 7784 Extend the definition of a wff to include the equivalence predicate.
wff 𝑅 Er 𝐴

Syntaxcec 7785 Extend the definition of a class to include equivalence class.
class [𝐴]𝑅

Syntaxcqs 7786 Extend the definition of a class to include quotient set.
class (𝐴 / 𝑅)

Definitiondf-er 7787 Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 7788 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 7807, ersymb 7801, and ertr 7802. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.)
(𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))

Theoremdfer2 7788* Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))

Definitiondf-ec 7789 Define the 𝑅-coset of 𝐴. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of 𝐴 modulo 𝑅 when 𝑅 is an equivalence relation (i.e. when Er 𝑅; see dfer2 7788). In this case, 𝐴 is a representative (member) of the equivalence class [𝐴]𝑅, which contains all sets that are equivalent to 𝐴. Definition of [Enderton] p. 57 uses the notation [𝐴] (subscript) 𝑅, although we simply follow the brackets by 𝑅 since we don't have subscripted expressions. For an alternate definition, see dfec2 7790. (Contributed by NM, 23-Jul-1995.)
[𝐴]𝑅 = (𝑅 “ {𝐴})

Theoremdfec2 7790* Alternate definition of 𝑅-coset of 𝐴. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
(𝐴𝑉 → [𝐴]𝑅 = {𝑦𝐴𝑅𝑦})

Theoremecexg 7791 An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
(𝑅𝐵 → [𝐴]𝑅 ∈ V)

Theoremecexr 7792 A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)

Definitiondf-qs 7793* Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
(𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}

Theoremereq1 7794 Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑅 = 𝑆 → (𝑅 Er 𝐴𝑆 Er 𝐴))

Theoremereq2 7795 Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝐴 = 𝐵 → (𝑅 Er 𝐴𝑅 Er 𝐵))

Theoremerrel 7796 An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → Rel 𝑅)

Theoremerdm 7797 The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Theoremercl 7798 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑𝐴𝑋)

Theoremersym 7799 An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑𝐵𝑅𝐴)

Theoremercl2 7800 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑𝐵𝑋)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
 Copyright terms: Public domain < Previous  Next >