Home Metamath Proof ExplorerTheorem List (p. 68 of 429) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27903) Hilbert Space Explorer (27904-29428) Users' Mathboxes (29429-42879)

Theorem List for Metamath Proof Explorer - 6701-6800   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremoveq2i 6701 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
𝐴 = 𝐵       (𝐶𝐹𝐴) = (𝐶𝐹𝐵)

Theoremoveq12i 6702 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐹𝐶) = (𝐵𝐹𝐷)

Theoremoveqi 6703 Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)
𝐴 = 𝐵       (𝐶𝐴𝐷) = (𝐶𝐵𝐷)

Theoremoveq123i 6704 Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
𝐴 = 𝐶    &   𝐵 = 𝐷    &   𝐹 = 𝐺       (𝐴𝐹𝐵) = (𝐶𝐺𝐷)

Theoremoveq1d 6705 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶))

Theoremoveq2d 6706 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵))

Theoremoveqd 6707 Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷))

Theoremoveq12d 6708 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))

Theoremoveqan12d 6709 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜑𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))

Theoremoveqan12rd 6710 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜓𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))

Theoremoveq123d 6711 Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷))

Theoremovrspc2v 6712* If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.)
(((𝑋𝐴𝑌𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶)

Theoremoveqrspc2v 6713* Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))       ((𝜑 ∧ (𝑋𝐴𝑌𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))

Theoremoveqdr 6714 Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.)
(𝜑𝐹 = 𝐺)       ((𝜑𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))

Theoremnfovd 6715 Deduction version of bound-variable hypothesis builder nfov 6716. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐹)    &   (𝜑𝑥𝐵)       (𝜑𝑥(𝐴𝐹𝐵))

Theoremnfov 6716 Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
𝑥𝐴    &   𝑥𝐹    &   𝑥𝐵       𝑥(𝐴𝐹𝐵)

Theoremoprabid 6717 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 20-Mar-2013.)
(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)

Theoremovex 6718 The result of an operation is a set. (Contributed by NM, 13-Mar-1995.)
(𝐴𝐹𝐵) ∈ V

Theoremovexi 6719 The result of an operation is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐴 = (𝐵𝐹𝐶)       𝐴 ∈ V

Theoremovexd 6720 The result of an operation is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑 → (𝐴𝐹𝐵) ∈ V)

Theoremovssunirn 6721 The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.)
(𝑋𝐹𝑌) ⊆ ran 𝐹

Theorem0ov 6722 Operation value of the empty set. (Contributed by AV, 15-May-2021.)
(𝐴𝐵) = ∅

Theoremovprc 6723 The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel dom 𝐹       (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)

Theoremovprc1 6724 The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.)
Rel dom 𝐹       𝐴 ∈ V → (𝐴𝐹𝐵) = ∅)

Theoremovprc2 6725 The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel dom 𝐹       𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)

Theoremovrcl 6726 Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015.)
Rel dom 𝐹       (𝐶 ∈ (𝐴𝐹𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Theoremcsbov123 6727 Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Revised by NM, 23-Aug-2018.)
𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)

Theoremcsbov 6728* Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.)
𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶)

Theoremcsbov12g 6729* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))

Theoremcsbov1g 6730* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐶))

Theoremcsbov2g 6731* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))

Theoremrspceov 6732* A frequently used special case of rspc2ev 3355 for operation values. (Contributed by NM, 21-Mar-2007.)
((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))

Theoremelovimad 6733 Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   (𝜑 → Fun 𝐹)    &   (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹)       (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷)))

Theoremfnbrovb 6734 Value of a binary operation expressed as a binary relation. See also fnbrfvb 6274 for functions on Cartesian products. (Contributed by BJ, 15-Feb-2022.)
((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐴𝐹𝐵) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))

Theoremfnotovb 6735 Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6275. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof shortened by BJ, 15-Feb-2022.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))

TheoremfnotovbOLD 6736 Old proof of fnotovb 6735 obsolete as of 15-Feb-2022. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))

Theoremopabbrex 6737 A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by BJ/AV, 20-Jun-2019.) (Proof shortened by OpenAI, 25-Mar-2020.)
((∀𝑥𝑦(𝑥𝑅𝑦𝜑) ∧ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ 𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝜓)} ∈ V)

Theoremopabresex2d 6738* Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.)
((𝜑𝑥(𝑊𝐺)𝑦) → 𝜓)    &   (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ∈ 𝑉)       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝑊𝐺)𝑦𝜃)} ∈ V)

Theoremfvmptopab 6739* The function value of a mapping 𝑀 to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function 𝐹 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.)
((𝜑𝑧 = 𝑍) → (𝜒𝜓))    &   (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐹𝑍)𝑦} ∈ V)    &   𝑀 = (𝑧 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑧)𝑦𝜒)})       (𝜑 → (𝑀𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐹𝑍)𝑦𝜓)})

Theorem0neqopab 6740 The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Theorembrabv 6741 If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
(𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))

Theorembrfvopab 6742 The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021.)
(𝑋 ∈ V → (𝐹𝑋) = {⟨𝑦, 𝑧⟩ ∣ 𝜑})       (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))

Theoremdfoprab2 6743* Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}

Theoremreloprab 6744* An operation class abstraction is a relation. (Contributed by NM, 16-Jun-2004.)
Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Theoremoprabv 6745* If a pair and a class are in a relationship given by a class abstraction of a collection of nested ordered pairs, the involved classes are sets. (Contributed by Alexander van der Vekens, 8-Jul-2018.)
(⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V))

Theoremnfoprab1 6746 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Theoremnfoprab2 6747 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.)
𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Theoremnfoprab3 6748 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Theoremnfoprab 6749* Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.)
𝑤𝜑       𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Theoremoprabbid 6750* Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑥𝜑    &   𝑦𝜑    &   𝑧𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})

Theoremoprabbidv 6751* Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.)
(𝜑 → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})

Theoremoprabbii 6752* Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
(𝜑𝜓)       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}

Theoremssoprab2 6753 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 5030. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
(∀𝑥𝑦𝑧(𝜑𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})

Theoremssoprab2b 6754 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 5031. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))

Theoremeqoprab2b 6755 Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 5034. (Contributed by Mario Carneiro, 4-Jan-2017.)
({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))

Theoremmpt2eq123 6756* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Revised by Mario Carneiro, 19-Mar-2015.)
((𝐴 = 𝐷 ∧ ∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)) → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))

Theoremmpt2eq12 6757* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
((𝐴 = 𝐶𝐵 = 𝐷) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))

Theoremmpt2eq123dva 6758* An equality deduction for the maps to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑𝐴 = 𝐷)    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐸)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶 = 𝐹)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))

Theoremmpt2eq123dv 6759* An equality deduction for the maps to notation. (Contributed by NM, 12-Sep-2011.)
(𝜑𝐴 = 𝐷)    &   (𝜑𝐵 = 𝐸)    &   (𝜑𝐶 = 𝐹)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))

Theoremmpt2eq123i 6760 An equality inference for the maps to notation. (Contributed by NM, 15-Jul-2013.)
𝐴 = 𝐷    &   𝐵 = 𝐸    &   𝐶 = 𝐹       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹)

Theoremmpt2eq3dva 6761* Slightly more general equality inference for the maps to notation. (Contributed by NM, 17-Oct-2013.)
((𝜑𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷))

Theoremmpt2eq3ia 6762 An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
((𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)

Theoremmpt2eq3dv 6763* An equality deduction for the maps to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.)
(𝜑𝐶 = 𝐷)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷))

Theoremnfmpt21 6764 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
𝑥(𝑥𝐴, 𝑦𝐵𝐶)

Theoremnfmpt22 6765 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
𝑦(𝑥𝐴, 𝑦𝐵𝐶)

Theoremnfmpt2 6766* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
𝑧𝐴    &   𝑧𝐵    &   𝑧𝐶       𝑧(𝑥𝐴, 𝑦𝐵𝐶)

Theoremmpt20 6767 A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.)
(𝑥 ∈ ∅, 𝑦𝐵𝐶) = ∅

Theoremoprab4 6768* Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}

Theoremcbvoprab1 6769* Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.)
𝑤𝜑    &   𝑥𝜓    &   (𝑥 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓}

Theoremcbvoprab2 6770* Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑤𝜑    &   𝑦𝜓    &   (𝑦 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜓}

Theoremcbvoprab12 6771* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝑤𝜑    &   𝑣𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}

Theoremcbvoprab12v 6772* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}

Theoremcbvoprab3 6773* Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.)
𝑤𝜑    &   𝑧𝜓    &   (𝑧 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}

Theoremcbvoprab3v 6774* Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑧 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}

Theoremcbvmpt2x 6775* Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpt2 6776 allows 𝐵 to be a function of 𝑥. (Contributed by NM, 29-Dec-2014.)
𝑧𝐵    &   𝑥𝐷    &   𝑧𝐶    &   𝑤𝐶    &   𝑥𝐸    &   𝑦𝐸    &   (𝑥 = 𝑧𝐵 = 𝐷)    &   ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)

Theoremcbvmpt2 6776* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
𝑧𝐶    &   𝑤𝐶    &   𝑥𝐷    &   𝑦𝐷    &   ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)

Theoremcbvmpt2v 6777* Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4782, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
(𝑥 = 𝑧𝐶 = 𝐸)    &   (𝑦 = 𝑤𝐸 = 𝐷)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)

Theoremelimdelov 6778 Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008.)
(𝜑𝐶 ∈ (𝐴𝐹𝐵))    &   𝑍 ∈ (𝑋𝐹𝑌)       if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))

Theoremovif 6779 Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶))

Theoremovif2 6780 Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018.)
(𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶))

Theoremovif12 6781 Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷))

Theoremifov 6782 Move a conditional outside of an operation. (Contributed by AV, 11-Nov-2019.)
(𝐴if(𝜑, 𝐹, 𝐺)𝐵) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐺𝐵))

Theoremdmoprab 6783* The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.)
dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑}

Theoremdmoprabss 6784* The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)

Theoremrnoprab 6785* The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}

Theoremrnoprab2 6786* The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}

Theoremreldmoprab 6787* The domain of an operation class abstraction is a relation. (Contributed by NM, 17-Mar-1995.)
Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Theoremoprabss 6788* Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)

Theoremeloprabga 6789* The law of concretion for operation class abstraction. Compare elopab 5012. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))

Theoremeloprabg 6790* The law of concretion for operation class abstraction. Compare elopab 5012. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃))

Theoremssoprab2i 6791* Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.)
(𝜑𝜓)       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}

Theoremmpt2v 6792* Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
(𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}

Theoremmpt2mptx 6793* Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)       (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)

Theoremmpt2mpt 6794* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
(𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)       (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)

Theoremmpt2difsnif 6795 A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.)
(𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)

Theoremmpt2snif 6796 A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
(𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)

Theoremfconstmpt2 6797* Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)

Theoremresoprab 6798* Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.)
({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}

Theoremresoprab2 6799* Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})

Theoremresmpt2 6800* Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
 Copyright terms: Public domain < Previous  Next >