![]() |
Metamath
Proof Explorer Theorem List (p. 60 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | iotauni 5901 | Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | ||
Theorem | iotaint 5902 | Equivalence between two different forms of ℩. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | ||
Theorem | iota1 5903 | Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | ||
Theorem | iotanul 5904 | Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | ||
Theorem | iotassuni 5905 | The ℩ class is a subset of the union of all elements satisfying 𝜑. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} | ||
Theorem | iotaex 5906 | Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the ℩ class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ (℩𝑥𝜑) ∈ V | ||
Theorem | iota4 5907 | Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) | ||
Theorem | iota4an 5908 | Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) | ||
Theorem | iota5 5909* | A method for computing iota. (Contributed by NM, 17-Sep-2013.) |
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) | ||
Theorem | iotabidv 5910* | Formula-building deduction rule for iota. (Contributed by NM, 20-Aug-2011.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) | ||
Theorem | iotabii 5911 | Formula-building deduction rule for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) | ||
Theorem | iotacl 5912 |
Membership law for descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota 5889). If you have a bounded iota-based definition, riotacl2 6664 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.) |
⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | ||
Theorem | iota2df 5913 | A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
Theorem | iota2d 5914* | A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → ∃!𝑥𝜓) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) | ||
Theorem | iota2 5915* | The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) | ||
Theorem | sniota 5916 | A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) | ||
Theorem | dfiota4 5917 | The ℩ operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.) |
⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) | ||
Theorem | dfiota4OLD 5918 | Obsolete proof of dfiota4 5917 as of 28-Oct-2021. (Contributed by Scott Fenton, 6-Oct-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) | ||
Theorem | csbiota 5919* | Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) (Revised by NM, 23-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑) | ||
Syntax | wfun 5920 | Extend the definition of a wff to include the function predicate. (Read: 𝐴 is a function.) |
wff Fun 𝐴 | ||
Syntax | wfn 5921 | Extend the definition of a wff to include the function predicate with a domain. (Read: 𝐴 is a function on 𝐵.) |
wff 𝐴 Fn 𝐵 | ||
Syntax | wf 5922 | Extend the definition of a wff to include the function predicate with domain and codomain. (Read: 𝐹 maps 𝐴 into 𝐵.) |
wff 𝐹:𝐴⟶𝐵 | ||
Syntax | wf1 5923 | Extend the definition of a wff to include one-to-one functions. (Read: 𝐹 maps 𝐴 one-to-one into 𝐵.) The notation ("1-1" above the arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–1-1→𝐵 | ||
Syntax | wfo 5924 | Extend the definition of a wff to include onto functions. (Read: 𝐹 maps 𝐴 onto 𝐵.) The notation ("onto" below the arrow) is from Definition 6.15(4) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–onto→𝐵 | ||
Syntax | wf1o 5925 | Extend the definition of a wff to include one-to-one onto functions. (Read: 𝐹 maps 𝐴 one-to-one onto 𝐵.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27. |
wff 𝐹:𝐴–1-1-onto→𝐵 | ||
Syntax | cfv 5926 | Extend the definition of a class to include the value of a function. (Read: The value of 𝐹 at 𝐴, or "𝐹 of 𝐴.") |
class (𝐹‘𝐴) | ||
Syntax | wiso 5927 | Extend the definition of a wff to include the isomorphism property. (Read: 𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵.) |
wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) | ||
Definition | df-fun 5928 | Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 14845). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 4762 with the maps-to notation (see df-mpt 4763 and df-mpt2 6695). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 5929), a function with a given domain and codomain (df-f 5930), a one-to-one function (df-f1 5931), an onto function (df-fo 5932), or a one-to-one onto function (df-f1o 5933). For alternate definitions, see dffun2 5936, dffun3 5937, dffun4 5938, dffun5 5939, dffun6 5941, dffun7 5953, dffun8 5954, and dffun9 5955. (Contributed by NM, 1-Aug-1994.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | ||
Definition | df-fn 5929 | Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 6085, dffn3 6092, dffn4 6159, and dffn5 6280. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) | ||
Definition | df-f 5930 | Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. 𝐹:𝐴⟶𝐵 can be read as "𝐹 is a function from 𝐴 to 𝐵". For alternate definitions, see dff2 6411, dff3 6412, and dff4 6413. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | ||
Definition | df-f1 5931 |
Define a one-to-one function. For equivalent definitions see dff12 6138
and dff13 6552. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We
use their notation ("1-1" above the arrow).
A one-to-one function is also called an "injection" or an "injective function", 𝐹:𝐴–1-1→𝐵 can be read as "𝐹 is an injection from 𝐴 into 𝐵". Injections are precisely the monomorphisms in the category SetCat of sets and set functions, see setcmon 16784. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | ||
Definition | df-fo 5932 |
Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6157, dffo3 6414, dffo4 6415, and dffo5 6416.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 16785. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | ||
Definition | df-f1o 5933 |
Define a one-to-one onto function. For equivalent definitions see
dff1o2 6180, dff1o3 6181, dff1o4 6183, and dff1o5 6184. Compare Definition
6.15(6) of [TakeutiZaring] p. 27.
We use their notation ("1-1" above
the arrow and "onto" below the arrow).
A one-to-one onto function is also called a "bijection" or a "bijective function", 𝐹:𝐴–1-1-onto→𝐵 can be read as "𝐹 is a bijection between 𝐴 and 𝐵". Bijections are precisely the isomorphisms in the category SetCat of sets and set functions, see setciso 16788. Therefore, two sets are called "isomorphic" if there is a bijection between them. According to isof1oidb 6614, two sets are isomorphic iff there is an isomorphism Isom regarding the identity relation. In this case, the two sets are also "equinumerous", see bren 8006. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | ||
Definition | df-fv 5934* | Define the value of a function, (𝐹‘𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 14924 after we define cosine in df-cos 14845). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 4763 and df-mpt2 6695), but this is not required. For example, 𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = 9 (ex-fv 27430). Note that df-ov 6693 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6256 and fvprc 6223). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e. "𝐹 of 𝐴," but without context-dependent notational ambiguity. Alternate definitions are dffv2 6310, dffv3 6225, fv2 6224, and fv3 6244 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 6304 and funfv2 6305. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6277. (Contributed by NM, 1-Aug-1994.) Revised to use ℩. Original version is now theorem dffv4 6226. (Revised by Scott Fenton, 6-Oct-2017.) |
⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | ||
Definition | df-isom 5935* | Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵." Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.) |
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | ||
Theorem | dffun2 5936* | Alternate definition of a function. (Contributed by NM, 29-Dec-1996.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
Theorem | dffun3 5937* | Alternate definition of function. (Contributed by NM, 29-Dec-1996.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | ||
Theorem | dffun4 5938* | Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝐴) → 𝑦 = 𝑧))) | ||
Theorem | dffun5 5939* | Alternate definition of function. (Contributed by NM, 29-Dec-1996.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) | ||
Theorem | dffun6f 5940* | Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | ||
Theorem | dffun6 5941* | Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) |
⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | ||
Theorem | funmo 5942* | A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) |
⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) | ||
Theorem | funrel 5943 | A function is a relation. (Contributed by NM, 1-Aug-1994.) |
⊢ (Fun 𝐴 → Rel 𝐴) | ||
Theorem | 0nelfun 5944 | A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.) |
⊢ (Fun 𝑅 → ∅ ∉ 𝑅) | ||
Theorem | funss 5945 | Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | ||
Theorem | funeq 5946 | Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | ||
Theorem | funeqi 5947 | Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (Fun 𝐴 ↔ Fun 𝐵) | ||
Theorem | funeqd 5948 | Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) | ||
Theorem | nffun 5949 | Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥Fun 𝐹 | ||
Theorem | sbcfung 5950 | Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun ⦋𝐴 / 𝑥⦌𝐹)) | ||
Theorem | funeu 5951* | There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) | ||
Theorem | funeu2 5952* | There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.) |
⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ 𝐹) → ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) | ||
Theorem | dffun7 5953* | Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one." However, dffun8 5954 shows that it doesn't matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | ||
Theorem | dffun8 5954* | Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 5953. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) | ||
Theorem | dffun9 5955* | Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) | ||
Theorem | funfn 5956 | An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | ||
Theorem | funfnd 5957 | A function is a function over its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → Fun 𝐴) ⇒ ⊢ (𝜑 → 𝐴 Fn dom 𝐴) | ||
Theorem | funi 5958 | The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.) |
⊢ Fun I | ||
Theorem | nfunv 5959 | The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.) |
⊢ ¬ Fun V | ||
Theorem | funopg 5960 | A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ Fun 〈𝐴, 𝐵〉) → 𝐴 = 𝐵) | ||
Theorem | funopab 5961* | A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.) |
⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) | ||
Theorem | funopabeq 5962* | A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.) |
⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} | ||
Theorem | funopab4 5963* | A class of ordered pairs of values in the form used by df-mpt 4763 is a function. (Contributed by NM, 17-Feb-2013.) |
⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} | ||
Theorem | funmpt 5964 | A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
Theorem | funmpt2 5965 | Functionality of a class given by a "maps to" notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ Fun 𝐹 | ||
Theorem | funco 5966 | The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | ||
Theorem | funres 5967 | A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | ||
Theorem | funssres 5968 | The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.) |
⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | ||
Theorem | fun2ssres 5969 | Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.) |
⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) | ||
Theorem | funun 5970 | The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹 ∪ 𝐺)) | ||
Theorem | fununmo 5971* | If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.) |
⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) | ||
Theorem | fununfun 5972 | If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.) |
⊢ (Fun (𝐹 ∪ 𝐺) → (Fun 𝐹 ∧ Fun 𝐺)) | ||
Theorem | fundif 5973 | A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.) |
⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) | ||
Theorem | funcnvsn 5974 | The converse singleton of an ordered pair is a function. This is equivalent to funsn 5977 via cnvsn 5655, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.) |
⊢ Fun ◡{〈𝐴, 𝐵〉} | ||
Theorem | funsng 5975 | A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | ||
Theorem | fnsng 5976 | Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} Fn {𝐴}) | ||
Theorem | funsn 5977 | A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ Fun {〈𝐴, 𝐵〉} | ||
Theorem | funprg 5978 | A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | ||
Theorem | funprgOLD 5979 | Obsolete proof of funprg 5978 as of 14-Jul-2021. (Contributed by FL, 26-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | ||
Theorem | funtpg 5980 | A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐻) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → Fun {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉, 〈𝑍, 𝐶〉}) | ||
Theorem | funtpgOLD 5981 | Obsolete proof of funtpg 5980 as of 14-Jul-2021. (Contributed by Alexander van der Vekens, 5-Dec-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐻) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → Fun {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉, 〈𝑍, 𝐶〉}) | ||
Theorem | funpr 5982 | A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | ||
Theorem | funtp 5983 | A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}) | ||
Theorem | fnsn 5984 | Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} | ||
Theorem | fnprg 5985 | Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵}) | ||
Theorem | fntpg 5986 | Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐻) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉, 〈𝑍, 𝐶〉} Fn {𝑋, 𝑌, 𝑍}) | ||
Theorem | fntp 5987 | A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) | ||
Theorem | funcnvpr 5988 | The converse pair of ordered pairs is a function if the second members are different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) |
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → Fun ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}) | ||
Theorem | funcnvtp 5989 | The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) |
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐵 ≠ 𝐷 ∧ 𝐵 ≠ 𝐹 ∧ 𝐷 ≠ 𝐹)) → Fun ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}) | ||
Theorem | funcnvqp 5990 | The converse quadruple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ ((((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉) ∧ (𝐸 ∈ 𝑊 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝐵 ≠ 𝐷 ∧ 𝐵 ≠ 𝐹 ∧ 𝐵 ≠ 𝐻) ∧ (𝐷 ≠ 𝐹 ∧ 𝐷 ≠ 𝐻) ∧ 𝐹 ≠ 𝐻)) → Fun ◡({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉})) | ||
Theorem | funcnvqpOLD 5991 | Obsolete proof of funcnvqp 5990 as of 14-Jul-2021. (Contributed by AV, 23-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉) ∧ (𝐸 ∈ 𝑊 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝐵 ≠ 𝐷 ∧ 𝐵 ≠ 𝐹 ∧ 𝐵 ≠ 𝐻) ∧ (𝐷 ≠ 𝐹 ∧ 𝐷 ≠ 𝐻) ∧ 𝐹 ≠ 𝐻)) → Fun ◡({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∪ {〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉})) | ||
Theorem | fun0 5992 | The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.) |
⊢ Fun ∅ | ||
Theorem | funcnv0 5993 | The converse of the empty set is a function. (Contributed by AV, 7-Jan-2021.) |
⊢ Fun ◡∅ | ||
Theorem | funcnvcnv 5994 | The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.) |
⊢ (Fun 𝐴 → Fun ◡◡𝐴) | ||
Theorem | funcnv2 5995* | A simpler equivalence for single-rooted (see funcnv 5996). (Contributed by NM, 9-Aug-2004.) |
⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) | ||
Theorem | funcnv 5996* | The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5995 for a simpler version. (Contributed by NM, 13-Aug-2004.) |
⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦) | ||
Theorem | funcnv3 5997* | A condition showing a class is single-rooted. (See funcnv 5996). (Contributed by NM, 26-May-2006.) |
⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦) | ||
Theorem | fun2cnv 5998* | The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.) |
⊢ (Fun ◡◡𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) | ||
Theorem | svrelfun 5999 | A single-valued relation is a function. (See fun2cnv 5998 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun ◡◡𝐴)) | ||
Theorem | fncnv 6000* | Single-rootedness (see funcnv 5996) of a class cut down by a Cartesian product. (Contributed by NM, 5-Mar-2007.) |
⊢ (◡(𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑥𝑅𝑦) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |