![]() |
Metamath
Proof Explorer Theorem List (p. 55 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dmiin 5401 | Domain of an intersection. (Contributed by FL, 15-Oct-2012.) |
⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 | ||
Theorem | rnopab 5402* | The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} | ||
Theorem | rnmpt 5403* | The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} | ||
Theorem | elrnmpt 5404* | The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) | ||
Theorem | elrnmpt1s 5405* | Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) | ||
Theorem | elrnmpt1 5406 | Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ ran 𝐹) | ||
Theorem | elrnmptg 5407* | Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) | ||
Theorem | elrnmpti 5408* | Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | ||
Theorem | rn0 5409 | The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
⊢ ran ∅ = ∅ | ||
Theorem | dfiun3g 5410 | Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | ||
Theorem | dfiin3g 5411 | Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | ||
Theorem | dfiun3 5412 | Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
Theorem | dfiin3 5413 | Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
Theorem | riinint 5414* | Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) | ||
Theorem | relrn0 5415 | A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.) |
⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) | ||
Theorem | dmrnssfld 5416 | The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | ||
Theorem | dmcoss 5417 | Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | ||
Theorem | rncoss 5418 | Range of a composition. (Contributed by NM, 19-Mar-1998.) |
⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 | ||
Theorem | dmcosseq 5419 | Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) = dom 𝐵) | ||
Theorem | dmcoeq 5420 | Domain of a composition. (Contributed by NM, 19-Mar-1998.) |
⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) | ||
Theorem | rncoeq 5421 | Range of a composition. (Contributed by NM, 19-Mar-1998.) |
⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) | ||
Theorem | reseq1 5422 | Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | ||
Theorem | reseq2 5423 | Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | ||
Theorem | reseq1i 5424 | Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) | ||
Theorem | reseq2i 5425 | Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) | ||
Theorem | reseq12i 5426 | Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) | ||
Theorem | reseq1d 5427 | Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | ||
Theorem | reseq2d 5428 | Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | ||
Theorem | reseq12d 5429 | Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) | ||
Theorem | nfres 5430 | Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) | ||
Theorem | csbres 5431 | Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) | ||
Theorem | res0 5432 | A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
⊢ (𝐴 ↾ ∅) = ∅ | ||
Theorem | dfres3 5433 | Alternate definition of restriction. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × ran 𝐴)) | ||
Theorem | opelresg 5434 | Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.) (Revised by BJ, 18-Feb-2022.) |
⊢ (𝐵 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) | ||
Theorem | brresg 5435 | Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷))) | ||
Theorem | opelres 5436 | Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) | ||
Theorem | brres 5437 | Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) | ||
Theorem | opelresOLD 5438 | Old proof of opelres 5436. Obsolete as of 18-Feb-2022. (Contributed by NM, 13-Nov-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) | ||
Theorem | brresOLD 5439 | Old proof of brres 5437. Obsolete as of 18-Feb-2022. (Contributed by NM, 12-Dec-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) | ||
Theorem | opelresgOLD 5440 | Old proof of opelresg 5434. Obsolete as of 18-Feb-2022. (Contributed by NM, 14-Oct-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐵 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷))) | ||
Theorem | opres 5441 | Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐷 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) | ||
Theorem | resieq 5442 | A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.) |
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) | ||
Theorem | opelresi 5443 | 〈𝐴, 𝐴〉 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.) |
⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | resres 5444 | The restriction of a restriction. (Contributed by NM, 27-Mar-2008.) |
⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) | ||
Theorem | resundi 5445 | Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | ||
Theorem | resundir 5446 | Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) | ||
Theorem | resindi 5447 | Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.) |
⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) | ||
Theorem | resindir 5448 | Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.) |
⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) | ||
Theorem | inres 5449 | Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.) |
⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ 𝐵) ↾ 𝐶) | ||
Theorem | resdifcom 5450 | Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.) |
⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) | ||
Theorem | resiun1 5451* | Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) (Proof shortened by JJ, 25-Aug-2021.) |
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) | ||
Theorem | resiun1OLD 5452* | Obsolete proof of resiun1 5451 as of 25-Aug-2021. (Contributed by Mario Carneiro, 29-May-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) | ||
Theorem | resiun2 5453* | Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) | ||
Theorem | dmres 5454 | The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | ||
Theorem | ssdmres 5455 | A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) | ||
Theorem | dmresexg 5456 | The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.) |
⊢ (𝐵 ∈ 𝑉 → dom (𝐴 ↾ 𝐵) ∈ V) | ||
Theorem | resss 5457 | A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | ||
Theorem | rescom 5458 | Commutative law for restriction. (Contributed by NM, 27-Mar-1998.) |
⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) | ||
Theorem | ssres 5459 | Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) | ||
Theorem | ssres2 5460 | Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | ||
Theorem | relres 5461 | A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ Rel (𝐴 ↾ 𝐵) | ||
Theorem | resabs1 5462 | Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | ||
Theorem | resabs1d 5463 | Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | ||
Theorem | resabs2 5464 | Absorption law for restriction. (Contributed by NM, 27-Mar-1998.) |
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) | ||
Theorem | residm 5465 | Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.) |
⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) | ||
Theorem | resima 5466 | A restriction to an image. (Contributed by NM, 29-Sep-2004.) |
⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) | ||
Theorem | resima2 5467 | Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) |
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) | ||
Theorem | resima2OLD 5468 | Obsolete proof of resima2 5467 as of 25-Aug-2021. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) | ||
Theorem | xpssres 5469 | Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) | ||
Theorem | elres 5470* | Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) |
⊢ (𝐴 ∈ (𝐵 ↾ 𝐶) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | ||
Theorem | elsnres 5471* | Membership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.) |
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) | ||
Theorem | relssres 5472 | Simplification law for restriction. (Contributed by NM, 16-Aug-1994.) |
⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) | ||
Theorem | dmressnsn 5473 | The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) | ||
Theorem | eldmressnsn 5474 | The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) | ||
Theorem | eldmeldmressn 5475 | An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) | ||
Theorem | resdm 5476 | A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | ||
Theorem | resexg 5477 | The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) | ||
Theorem | resex 5478 | The restriction of a set is a set. (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ↾ 𝐵) ∈ V | ||
Theorem | resindm 5479 | When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.) |
⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) | ||
Theorem | resdmdfsn 5480 | Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.) |
⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) | ||
Theorem | resopab 5481* | Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.) |
⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | ||
Theorem | iss 5482 | A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴)) | ||
Theorem | resopab2 5483* | Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007.) |
⊢ (𝐴 ⊆ 𝐵 → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | ||
Theorem | resmpt 5484* | Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.) |
⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | resmpt3 5485* | Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.) |
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) | ||
Theorem | resmptf 5486 | Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | resmptd 5487* | Restriction of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | dfres2 5488* | Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | ||
Theorem | mptss 5489* | Sufficient condition for inclusion in map-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | opabresid 5490* | The restricted identity expressed with the class builder. (Contributed by FL, 25-Apr-2012.) |
⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ( I ↾ 𝐴) | ||
Theorem | mptresid 5491* | The restricted identity expressed with the "maps to" notation. (Contributed by FL, 25-Apr-2012.) |
⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ( I ↾ 𝐴) | ||
Theorem | dmresi 5492 | The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
⊢ dom ( I ↾ 𝐴) = 𝐴 | ||
Theorem | restidsing 5493 | Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) |
⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | ||
Theorem | restidsingOLD 5494 | Obsolete proof of restidsing 5493 as of 25-Aug-2021. (Contributed by FL, 2-Aug-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | ||
Theorem | residOLD 5495 | Obsolete as of 19-Feb-2022. Use dfrel3 5627 instead. (Contributed by NM, 16-Mar-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Rel 𝐴 → (𝐴 ↾ V) = 𝐴) | ||
Theorem | imaeq1 5496 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | ||
Theorem | imaeq2 5497 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | ||
Theorem | imaeq1i 5498 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) | ||
Theorem | imaeq2i 5499 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) | ||
Theorem | imaeq1d 5500 | Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |