![]() |
Metamath
Proof Explorer Theorem List (p. 54 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ralxpf 5301* | Version of ralxp 5296 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) | ||
Theorem | rexxpf 5302* | Version of rexxp 5297 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) | ||
Theorem | iunxpf 5303* | Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.) |
⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) ⇒ ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 | ||
Theorem | opabbi2dv 5304* | Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2771. (Contributed by NM, 24-Feb-2014.) |
⊢ Rel 𝐴 & ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝜓)) ⇒ ⊢ (𝜑 → 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜓}) | ||
Theorem | relop 5305* | A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (Rel 〈𝐴, 𝐵〉 ↔ ∃𝑥∃𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})) | ||
Theorem | ideqg 5306 | For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | ideq 5307 | For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) | ||
Theorem | ididg 5308 | A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | ||
Theorem | issetid 5309 | Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) | ||
Theorem | coss1 5310 | Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | ||
Theorem | coss2 5311 | Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | ||
Theorem | coeq1 5312 | Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | ||
Theorem | coeq2 5313 | Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | ||
Theorem | coeq1i 5314 | Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) | ||
Theorem | coeq2i 5315 | Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) | ||
Theorem | coeq1d 5316 | Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | ||
Theorem | coeq2d 5317 | Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | ||
Theorem | coeq12i 5318 | Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) | ||
Theorem | coeq12d 5319 | Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) | ||
Theorem | nfco 5320 | Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) | ||
Theorem | brcog 5321* | Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | ||
Theorem | opelco2g 5322* | Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶))) | ||
Theorem | brcogw 5323 | Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) | ||
Theorem | eqbrrdva 5324* | Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.) |
⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) & ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | brco 5325* | Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) | ||
Theorem | opelco 5326* | Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) | ||
Theorem | cnvss 5327 | Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | ||
Theorem | cnveq 5328 | Equality theorem for converse. (Contributed by NM, 13-Aug-1995.) |
⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | ||
Theorem | cnveqi 5329 | Equality inference for converse. (Contributed by NM, 23-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ◡𝐴 = ◡𝐵 | ||
Theorem | cnveqd 5330 | Equality deduction for converse. (Contributed by NM, 6-Dec-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ◡𝐴 = ◡𝐵) | ||
Theorem | elcnv 5331* | Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.) |
⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑦𝑅𝑥)) | ||
Theorem | elcnv2 5332* | Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.) |
⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑦, 𝑥〉 ∈ 𝑅)) | ||
Theorem | nfcnv 5333 | Bound-variable hypothesis builder for converse. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥◡𝐴 | ||
Theorem | opelcnvg 5334 | Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | ||
Theorem | brcnvg 5335 | The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
Theorem | opelcnv 5336 | Ordered-pair membership in converse. (Contributed by NM, 13-Aug-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) | ||
Theorem | brcnv 5337 | The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | ||
Theorem | csbcnv 5338 | Move class substitution in and out of the converse of a function. Version of csbcnvgALT 5339 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.) |
⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 | ||
Theorem | csbcnvgALT 5339 | Move class substitution in and out of the converse of a function. Version of csbcnv 5338 with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) | ||
Theorem | cnvco 5340 | Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | ||
Theorem | cnvuni 5341* | The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.) |
⊢ ◡∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ◡𝑥 | ||
Theorem | dfdm3 5342* | Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} | ||
Theorem | dfrn2 5343* | Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.) |
⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | ||
Theorem | dfrn3 5344* | Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | ||
Theorem | elrn2g 5345* | Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) | ||
Theorem | elrng 5346* | Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) | ||
Theorem | ssrelrn 5347* | If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.) |
⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) | ||
Theorem | dfdm4 5348 | Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
⊢ dom 𝐴 = ran ◡𝐴 | ||
Theorem | dfdmf 5349* | Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | ||
Theorem | csbdm 5350 | Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 | ||
Theorem | eldmg 5351* | Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | ||
Theorem | eldm2g 5352* | Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) | ||
Theorem | eldm 5353* | Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) | ||
Theorem | eldm2 5354* | Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) | ||
Theorem | dmss 5355 | Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) | ||
Theorem | dmeq 5356 | Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | ||
Theorem | dmeqi 5357 | Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ dom 𝐴 = dom 𝐵 | ||
Theorem | dmeqd 5358 | Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → dom 𝐴 = dom 𝐵) | ||
Theorem | opeldmd 5359 | Membership of first of an ordered pair in a domain. Deduction version of opeldm 5360. (Contributed by AV, 11-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) | ||
Theorem | opeldm 5360 | Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) | ||
Theorem | breldm 5361 | Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) | ||
Theorem | breldmg 5362 | Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | ||
Theorem | dmun 5363 | The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) | ||
Theorem | dmin 5364 | The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) | ||
Theorem | dmiun 5365 | The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 | ||
Theorem | dmuni 5366* | The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 | ||
Theorem | dmopab 5367* | The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} | ||
Theorem | dmopabss 5368* | Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | ||
Theorem | dmopab3 5369* | The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) | ||
Theorem | opabssxpd 5370* | An ordered-pair class abstraction is a subset of an Cartesian product. Formerly part of proof for opabex2 7271. (Contributed by AV, 26-Nov-2021.) |
⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) | ||
Theorem | dm0 5371 | The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ dom ∅ = ∅ | ||
Theorem | dmi 5372 | The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ dom I = V | ||
Theorem | dmv 5373 | The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.) |
⊢ dom V = V | ||
Theorem | dm0rn0 5374 | An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) |
⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) | ||
Theorem | reldm0 5375 | A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) | ||
Theorem | dmxp 5376 | The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | ||
Theorem | dmxpid 5377 | The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) |
⊢ dom (𝐴 × 𝐴) = 𝐴 | ||
Theorem | dmxpin 5378 | The domain of the intersection of two square Cartesian products. Unlike dmin 5364, equality holds. (Contributed by NM, 29-Jan-2008.) |
⊢ dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴 ∩ 𝐵) | ||
Theorem | xpid11 5379 | The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) | ||
Theorem | dmcnvcnv 5380 | The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 5618). (Contributed by NM, 8-Apr-2007.) |
⊢ dom ◡◡𝐴 = dom 𝐴 | ||
Theorem | rncnvcnv 5381 | The range of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
⊢ ran ◡◡𝐴 = ran 𝐴 | ||
Theorem | elreldm 5382 | The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.) |
⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) | ||
Theorem | rneq 5383 | Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | ||
Theorem | rneqi 5384 | Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ran 𝐴 = ran 𝐵 | ||
Theorem | rneqd 5385 | Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ran 𝐴 = ran 𝐵) | ||
Theorem | rnss 5386 | Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) | ||
Theorem | brelrng 5387 | The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.) |
⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | ||
Theorem | brelrn 5388 | The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) | ||
Theorem | opelrn 5389 | Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) | ||
Theorem | releldm 5390 | The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5277 and brv 4970. (Contributed by NM, 2-Jul-2008.) |
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | ||
Theorem | relelrn 5391 | The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.) |
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅) | ||
Theorem | releldmb 5392* | Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.) |
⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | ||
Theorem | relelrnb 5393* | Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.) |
⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) | ||
Theorem | releldmi 5394 | The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) | ||
Theorem | relelrni 5395 | The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ ran 𝑅) | ||
Theorem | dfrnf 5396* | Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | ||
Theorem | elrn2 5397* | Membership in a range. (Contributed by NM, 10-Jul-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) | ||
Theorem | elrn 5398* | Membership in a range. (Contributed by NM, 2-Apr-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) | ||
Theorem | nfdm 5399 | Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥dom 𝐴 | ||
Theorem | nfrn 5400 | Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥ran 𝐴 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |