HomeHome Metamath Proof Explorer
Theorem List (p. 426 of 431)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28055)
  Hilbert Space Explorer  Hilbert Space Explorer
(28056-29580)
  Users' Mathboxes  Users' Mathboxes
(29581-43033)
 

Theorem List for Metamath Proof Explorer - 42501-42600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrhmsubcsetclem2 42501* Lemma 2 for rhmsubcsetc 42502. (Contributed by AV, 9-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (Ring ∩ 𝑈))    &   (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))       ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
 
Theoremrhmsubcsetc 42502 The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (Ring ∩ 𝑈))    &   (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))       (𝜑𝐻 ∈ (Subcat‘𝐶))
 
Theoremringccat 42503 The category of unital rings is a category. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 9-Mar-2020.)
𝐶 = (RingCat‘𝑈)       (𝑈𝑉𝐶 ∈ Cat)
 
Theoremringcid 42504 The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.)
𝐶 = (RingCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   𝑆 = (Base‘𝑋)       (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))
 
Theoremrhmsscrnghm 42505 The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the non-unital ring homomorphisms between non-unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.)
(𝜑𝑈𝑉)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   (𝜑𝑆 = (Rng ∩ 𝑈))       (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾ (𝑆 × 𝑆)))
 
Theoremrhmsubcrngclem1 42506 Lemma 1 for rhmsubcrngc 42508. (Contributed by AV, 9-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (Ring ∩ 𝑈))    &   (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))       ((𝜑𝑥𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥))
 
Theoremrhmsubcrngclem2 42507* Lemma 2 for rhmsubcrngc 42508. (Contributed by AV, 12-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (Ring ∩ 𝑈))    &   (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))       ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
 
Theoremrhmsubcrngc 42508 The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of non-unital rings. (Contributed by AV, 12-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (Ring ∩ 𝑈))    &   (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))       (𝜑𝐻 ∈ (Subcat‘𝐶))
 
Theoremrngcresringcat 42509 The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (Ring ∩ 𝑈))    &   (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))       (𝜑 → (𝐶cat 𝐻) = (RingCat‘𝑈))
 
Theoremringcsect 42510 A section in the category of unital rings, written out. (Contributed by AV, 14-Feb-2020.)
𝐶 = (RingCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐸 = (Base‘𝑋)    &   𝑆 = (Sect‘𝐶)       (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
 
Theoremringcinv 42511 An inverse in the category of unital rings is the converse operation. (Contributed by AV, 14-Feb-2020.)
𝐶 = (RingCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑁 = (Inv‘𝐶)       (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)))
 
Theoremringciso 42512 An isomorphism in the category of unital rings is a bijection. (Contributed by AV, 14-Feb-2020.)
𝐶 = (RingCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)       (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌)))
 
Theoremringcbasbas 42513 An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020.)
𝐶 = (RingCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈 ∈ WUni)       ((𝜑𝑅𝐵) → (Base‘𝑅) ∈ 𝑈)
 
Theoremfuncringcsetc 42514* The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 26-Mar-2020.)
𝑅 = (RingCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       (𝜑𝐹(𝑅 Func 𝑆)𝐺)
 
TheoremfuncringcsetcALTV2lem1 42515* Lemma 1 for funcringcsetcALTV2 42524. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))       ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
 
TheoremfuncringcsetcALTV2lem2 42516* Lemma 2 for funcringcsetcALTV2 42524. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))       ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
 
TheoremfuncringcsetcALTV2lem3 42517* Lemma 3 for funcringcsetcALTV2 42524. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))       (𝜑𝐹:𝐵𝐶)
 
TheoremfuncringcsetcALTV2lem4 42518* Lemma 4 for funcringcsetcALTV2 42524. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       (𝜑𝐺 Fn (𝐵 × 𝐵))
 
TheoremfuncringcsetcALTV2lem5 42519* Lemma 5 for funcringcsetcALTV2 42524. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌)))
 
TheoremfuncringcsetcALTV2lem6 42520* Lemma 6 for funcringcsetcALTV2 42524. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
 
TheoremfuncringcsetcALTV2lem7 42521* Lemma 7 for funcringcsetcALTV2 42524. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
 
TheoremfuncringcsetcALTV2lem8 42522* Lemma 8 for funcringcsetcALTV2 42524. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
 
TheoremfuncringcsetcALTV2lem9 42523* Lemma 9 for funcringcsetcALTV2 42524. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
 
TheoremfuncringcsetcALTV2 42524* The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       (𝜑𝐹(𝑅 Func 𝑆)𝐺)
 
TheoremringcbasALTV 42525 Set of objects of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)       (𝜑𝐵 = (𝑈 ∩ Ring))
 
TheoremringchomfvalALTV 42526* Set of arrows of the category of rings (in a universe). (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)       (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RingHom 𝑦)))
 
TheoremringchomALTV 42527 Set of arrows of the category of rings (in a universe). (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))
 
TheoremelringchomALTV 42528 A morphism of rings is a function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)))
 
TheoremringccofvalALTV 42529* Composition in the category of rings. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)       (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RingHom 𝑧), 𝑓 ∈ ((1st𝑣) RingHom (2nd𝑣)) ↦ (𝑔𝑓))))
 
TheoremringccoALTV 42530 Composition in the category of rings. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋 RingHom 𝑌))    &   (𝜑𝐺 ∈ (𝑌 RingHom 𝑍))       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
 
TheoremringccatidALTV 42531* Lemma for ringccatALTV 42532. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)       (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
 
TheoremringccatALTV 42532 The category of rings is a category. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)       (𝑈𝑉𝐶 ∈ Cat)
 
TheoremringcidALTV 42533 The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   𝑆 = (Base‘𝑋)       (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))
 
TheoremringcsectALTV 42534 A section in the category of rings, written out. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐸 = (Base‘𝑋)    &   𝑆 = (Sect‘𝐶)       (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
 
TheoremringcinvALTV 42535 An inverse in the category of rings is the converse operation. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑁 = (Inv‘𝐶)       (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = 𝐹)))
 
TheoremringcisoALTV 42536 An isomorphism in the category of rings is a bijection. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)       (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌)))
 
TheoremringcbasbasALTV 42537 An element of the base set of the base set of the category of rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈 ∈ WUni)       ((𝜑𝑅𝐵) → (Base‘𝑅) ∈ 𝑈)
 
Theoremfuncringcsetclem1ALTV 42538* Lemma 1 for funcringcsetcALTV 42547. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCatALTV‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))       ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
 
Theoremfuncringcsetclem2ALTV 42539* Lemma 2 for funcringcsetcALTV 42547. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCatALTV‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))       ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
 
Theoremfuncringcsetclem3ALTV 42540* Lemma 3 for funcringcsetcALTV 42547. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCatALTV‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))       (𝜑𝐹:𝐵𝐶)
 
Theoremfuncringcsetclem4ALTV 42541* Lemma 4 for funcringcsetcALTV 42547. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCatALTV‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       (𝜑𝐺 Fn (𝐵 × 𝐵))
 
Theoremfuncringcsetclem5ALTV 42542* Lemma 5 for funcringcsetcALTV 42547. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCatALTV‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌)))
 
Theoremfuncringcsetclem6ALTV 42543* Lemma 6 for funcringcsetcALTV 42547. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCatALTV‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
 
Theoremfuncringcsetclem7ALTV 42544* Lemma 7 for funcringcsetcALTV 42547. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCatALTV‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       ((𝜑𝑋𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
 
Theoremfuncringcsetclem8ALTV 42545* Lemma 8 for funcringcsetcALTV 42547. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCatALTV‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
 
Theoremfuncringcsetclem9ALTV 42546* Lemma 9 for funcringcsetcALTV 42547. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCatALTV‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
 
TheoremfuncringcsetcALTV 42547* The "natural forgetful functor" from the category of rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020.) (New usage is discouraged.)
𝑅 = (RingCatALTV‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))       (𝜑𝐹(𝑅 Func 𝑆)𝐺)
 
Theoremirinitoringc 42548 The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.)
(𝜑𝑈𝑉)    &   (𝜑 → ℤring𝑈)    &   𝐶 = (RingCat‘𝑈)       (𝜑 → ℤring ∈ (InitO‘𝐶))
 
Theoremzrtermoringc 42549 The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RingCat‘𝑈)    &   (𝜑𝑍 ∈ (Ring ∖ NzRing))    &   (𝜑𝑍𝑈)       (𝜑𝑍 ∈ (TermO‘𝐶))
 
Theoremzrninitoringc 42550* The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RingCat‘𝑈)    &   (𝜑𝑍 ∈ (Ring ∖ NzRing))    &   (𝜑𝑍𝑈)    &   (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing)       (𝜑𝑍 ∉ (InitO‘𝐶))
 
Theoremnzerooringczr 42551 There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RingCat‘𝑈)    &   (𝜑𝑍 ∈ (Ring ∖ NzRing))    &   (𝜑𝑍𝑈)    &   (𝜑 → ℤring𝑈)       (𝜑 → (ZeroO‘𝐶) = ∅)
 
20.35.14.10  Subcategories of the category of rings
 
Theoremsrhmsubclem1 42552* Lemma 1 for srhmsubc 42555. (Contributed by AV, 19-Feb-2020.)
𝑟𝑆 𝑟 ∈ Ring    &   𝐶 = (𝑈𝑆)       (𝑋𝐶𝑋 ∈ (𝑈 ∩ Ring))
 
Theoremsrhmsubclem2 42553* Lemma 2 for srhmsubc 42555. (Contributed by AV, 19-Feb-2020.)
𝑟𝑆 𝑟 ∈ Ring    &   𝐶 = (𝑈𝑆)       ((𝑈𝑉𝑋𝐶) → 𝑋 ∈ (Base‘(RingCat‘𝑈)))
 
Theoremsrhmsubclem3 42554* Lemma 3 for srhmsubc 42555. (Contributed by AV, 19-Feb-2020.)
𝑟𝑆 𝑟 ∈ Ring    &   𝐶 = (𝑈𝑆)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCat‘𝑈))𝑌))
 
Theoremsrhmsubc 42555* According to df-subc 16644, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16672 and subcss2 16675). Therefore, the set of special ring homomorphisms (i.e. ring homomorphisms from a special ring to another ring of that kind) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.)
𝑟𝑆 𝑟 ∈ Ring    &   𝐶 = (𝑈𝑆)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
 
Theoremsringcat 42556* The restriction of the category of (unital) rings to the set of special ring homomorphisms is a category. (Contributed by AV, 19-Feb-2020.)
𝑟𝑆 𝑟 ∈ Ring    &   𝐶 = (𝑈𝑆)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat)
 
Theoremcrhmsubc 42557* According to df-subc 16644, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16672 and subcss2 16675). Therefore, the set of commutative ring homomorphisms (i.e. ring homomorphisms from a commutative ring to a commutative ring) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.)
𝐶 = (𝑈 ∩ CRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
 
Theoremcringcat 42558* The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020.)
𝐶 = (𝑈 ∩ CRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat)
 
Theoremdrhmsubc 42559* According to df-subc 16644, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16672 and subcss2 16675). Therefore, the set of division ring homomorphisms is a "subcategory" of the category of (unital) rings. (Contributed by AV, 20-Feb-2020.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
 
Theoremdrngcat 42560* The restriction of the category of (unital) rings to the set of division ring homomorphisms is a category, the "category of division rings". (Contributed by AV, 20-Feb-2020.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat)
 
Theoremfldcat 42561* The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))    &   𝐷 = (𝑈 ∩ Field)    &   𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → ((RingCat‘𝑈) ↾cat 𝐹) ∈ Cat)
 
Theoremfldc 42562* The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))    &   𝐷 = (𝑈 ∩ Field)    &   𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat)
 
Theoremfldhmsubc 42563* According to df-subc 16644, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16672 and subcss2 16675). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))    &   𝐷 = (𝑈 ∩ Field)    &   𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)))
 
Theoremrngcrescrhm 42564 The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCat‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))
 
Theoremrhmsubclem1 42565 Lemma 1 for rhmsubc 42569. (Contributed by AV, 2-Mar-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCat‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       (𝜑𝐻 Fn (𝑅 × 𝑅))
 
Theoremrhmsubclem2 42566 Lemma 2 for rhmsubc 42569. (Contributed by AV, 2-Mar-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCat‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       ((𝜑𝑋𝑅𝑌𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))
 
Theoremrhmsubclem3 42567* Lemma 3 for rhmsubc 42569. (Contributed by AV, 2-Mar-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCat‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
 
Theoremrhmsubclem4 42568* Lemma 4 for rhmsubc 42569. (Contributed by AV, 2-Mar-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCat‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
 
Theoremrhmsubc 42569 According to df-subc 16644, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16672 and subcss2 16675). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCat‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       (𝜑𝐻 ∈ (Subcat‘(RngCat‘𝑈)))
 
Theoremrhmsubccat 42570 The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCat‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       (𝜑 → ((RngCat‘𝑈) ↾cat 𝐻) ∈ Cat)
 
TheoremsrhmsubcALTVlem1 42571* Lemma 1 for srhmsubcALTV 42573. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.)
𝑟𝑆 𝑟 ∈ Ring    &   𝐶 = (𝑈𝑆)       ((𝑈𝑉𝑋𝐶) → 𝑋 ∈ (Base‘(RingCatALTV‘𝑈)))
 
TheoremsrhmsubcALTVlem2 42572* Lemma 2 for srhmsubcALTV 42573. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.)
𝑟𝑆 𝑟 ∈ Ring    &   𝐶 = (𝑈𝑆)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌))
 
TheoremsrhmsubcALTV 42573* According to df-subc 16644, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16672 and subcss2 16675). Therefore, the set of special ring homomorphisms (i.e. ring homomorphisms from a special ring to another ring of that kind) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.)
𝑟𝑆 𝑟 ∈ Ring    &   𝐶 = (𝑈𝑆)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
 
TheoremsringcatALTV 42574* The restriction of the category of (unital) rings to the set of special ring homomorphisms is a category. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.)
𝑟𝑆 𝑟 ∈ Ring    &   𝐶 = (𝑈𝑆)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐽) ∈ Cat)
 
TheoremcrhmsubcALTV 42575* According to df-subc 16644, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16672 and subcss2 16675). Therefore, the set of commutative ring homomorphisms (i.e. ring homomorphisms from a commutative ring to a commutative ring) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.)
𝐶 = (𝑈 ∩ CRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
 
TheoremcringcatALTV 42576* The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.)
𝐶 = (𝑈 ∩ CRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐽) ∈ Cat)
 
TheoremdrhmsubcALTV 42577* According to df-subc 16644, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16672 and subcss2 16675). Therefore, the set of division ring homomorphisms is a "subcategory" of the category of (unital) rings. (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
 
TheoremdrngcatALTV 42578* The restriction of the category of (unital) rings to the set of division ring homomorphisms is a category, the "category of division rings". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐽) ∈ Cat)
 
TheoremfldcatALTV 42579* The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))    &   𝐷 = (𝑈 ∩ Field)    &   𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐹) ∈ Cat)
 
TheoremfldcALTV 42580* The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))    &   𝐷 = (𝑈 ∩ Field)    &   𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat)
 
TheoremfldhmsubcALTV 42581* According to df-subc 16644, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16672 and subcss2 16675). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))    &   𝐷 = (𝑈 ∩ Field)    &   𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)))
 
TheoremrngcrescrhmALTV 42582 The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCatALTV‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))
 
TheoremrhmsubcALTVlem1 42583 Lemma 1 for rhmsubcALTV 42587. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCatALTV‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       (𝜑𝐻 Fn (𝑅 × 𝑅))
 
TheoremrhmsubcALTVlem2 42584 Lemma 2 for rhmsubcALTV 42587. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCatALTV‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       ((𝜑𝑋𝑅𝑌𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))
 
TheoremrhmsubcALTVlem3 42585* Lemma 3 for rhmsubcALTV 42587. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCatALTV‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       ((𝜑𝑥𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
 
TheoremrhmsubcALTVlem4 42586* Lemma 4 for rhmsubcALTV 42587. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCatALTV‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
 
TheoremrhmsubcALTV 42587 According to df-subc 16644, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16672 and subcss2 16675). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCatALTV‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       (𝜑𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈)))
 
TheoremrhmsubcALTVcat 42588 The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020.) (New usage is discouraged.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCatALTV‘𝑈)    &   (𝜑𝑅 = (Ring ∩ 𝑈))    &   𝐻 = ( RingHom ↾ (𝑅 × 𝑅))       (𝜑 → ((RngCatALTV‘𝑈) ↾cat 𝐻) ∈ Cat)
 
20.35.15  Basic algebraic structures (extension)
 
20.35.15.1  Auxiliary theorems
 
Theoremxpprsng 42589 The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019.)
((𝐴𝑉𝐵𝑊𝐶𝑈) → ({𝐴, 𝐵} × {𝐶}) = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐶⟩})
 
Theoremopeliun2xp 42590 Membership of an ordered pair in a union of Cartesian products over its second component, analogous to opeliunxp 5315. (Contributed by AV, 30-Mar-2019.)
(⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝐶𝐴))
 
Theoremeliunxp2 42591* Membership in a union of Cartesian products over its second component, analogous to eliunxp 5403. (Contributed by AV, 30-Mar-2019.)
(𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
 
Theoremmpt2mptx2 42592* Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐴(𝑦) is not assumed to be constant w.r.t 𝑦, analogous to mpt2mptx 6904. (Contributed by AV, 30-Mar-2019.)
(𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)       (𝑧 𝑦𝐵 (𝐴 × {𝑦}) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
 
Theoremcbvmpt2x2 42593* Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpt2 6887 allows 𝐴 to be a function of 𝑦, analogous to cbvmpt2x 6886. (Contributed by AV, 30-Mar-2019.)
𝑧𝐴    &   𝑦𝐷    &   𝑧𝐶    &   𝑤𝐶    &   𝑥𝐸    &   𝑦𝐸    &   (𝑦 = 𝑧𝐴 = 𝐷)    &   ((𝑦 = 𝑧𝑥 = 𝑤) → 𝐶 = 𝐸)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑤𝐷, 𝑧𝐵𝐸)
 
Theoremdmmpt2ssx2 42594* The domain of a mapping is a subset of its base classes expressed as union of Cartesian products over its second component, analogous to dmmpt2ssx 7391. (Contributed by AV, 30-Mar-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       dom 𝐹 𝑦𝐵 (𝐴 × {𝑦})
 
Theoremmpt2exxg2 42595* Existence of an operation class abstraction (version for dependent domains, i.e. the first base class may depend on the second base class), analogous to mpt2exxg 7400. (Contributed by AV, 30-Mar-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝐵𝑅 ∧ ∀𝑦𝐵 𝐴𝑆) → 𝐹 ∈ V)
 
Theoremovmpt2rdxf 42596* Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpt2dxf 6939. (Contributed by AV, 30-Mar-2019.)
(𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)    &   ((𝜑𝑦 = 𝐵) → 𝐶 = 𝐿)    &   (𝜑𝐴𝐿)    &   (𝜑𝐵𝐷)    &   (𝜑𝑆𝑋)    &   𝑥𝜑    &   𝑦𝜑    &   𝑦𝐴    &   𝑥𝐵    &   𝑥𝑆    &   𝑦𝑆       (𝜑 → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpt2rdx 42597* Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpt2dxf 6939. (Contributed by AV, 30-Mar-2019.)
(𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)    &   ((𝜑𝑦 = 𝐵) → 𝐶 = 𝐿)    &   (𝜑𝐴𝐿)    &   (𝜑𝐵𝐷)    &   (𝜑𝑆𝑋)       (𝜑 → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpt2x2 42598* The value of an operation class abstraction. Variant of ovmpt2ga 6943 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)    &   (𝑦 = 𝐵𝐶 = 𝐿)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐿𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremfdmdifeqresdif 42599* The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.)
𝐹 = (𝑥𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺𝑥)))       (𝐺:(𝐷 ∖ {𝑌})⟶𝑅𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌})))
 
Theoremoffvalfv 42600* The function operation expressed as a mapping with function values. (Contributed by AV, 6-Apr-2019.)
(𝜑𝐴𝑉)    &   (𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐴)       (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43033
  Copyright terms: Public domain < Previous  Next >