![]() |
Metamath
Proof Explorer Theorem List (p. 425 of 431) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28055) |
![]() (28056-29580) |
![]() (29581-43033) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lidlssbas 42401 | The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) | ||
Theorem | lidlbas 42402 | A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) | ||
Theorem | lidlabl 42403 | A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Abel) | ||
Theorem | lidlmmgm 42404 | The multiplicative group of a (left) ideal of a ring is a magma. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Mgm) | ||
Theorem | lidlmsgrp 42405 | The multiplicative group of a (left) ideal of a ring is a semigroup. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ SGrp) | ||
Theorem | lidlrng 42406 | A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Rng) | ||
Theorem | zlidlring 42407 | The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring) | ||
Theorem | uzlidlring 42408 | Only the zero (left) ideal or the unit (left) ideal of a domain is a unital ring. (Contributed by AV, 18-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) | ||
Theorem | lidldomnnring 42409 | A (left) ideal of a domain which is neither the zero ideal nor the unit ideal is not a unital ring. (Contributed by AV, 18-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → 𝐼 ∉ Ring) | ||
Theorem | 0even 42410* | 0 is an even integer. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⇒ ⊢ 0 ∈ 𝐸 | ||
Theorem | 1neven 42411* | 1 is not an even integer. (Contributed by AV, 12-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⇒ ⊢ 1 ∉ 𝐸 | ||
Theorem | 2even 42412* | 2 is an even integer. (Contributed by AV, 12-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⇒ ⊢ 2 ∈ 𝐸 | ||
Theorem | 2zlidl 42413* | The even integers are a (left) ideal of the ring of integers. (Contributed by AV, 20-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑈 = (LIdeal‘ℤring) ⇒ ⊢ 𝐸 ∈ 𝑈 | ||
Theorem | 2zrng 42414* | The ring of integers restricted to the even integers is a (non-unital) ring, the "ring of even integers". Remark: the structure of the complementary subset of the set of integers, the odd integers, is not even a magma, see oddinmgm 42294. (Contributed by AV, 20-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑈 = (LIdeal‘ℤring) & ⊢ 𝑅 = (ℤring ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Rng | ||
Theorem | 2zrngbas 42415* | The base set of R is the set of all even integers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝐸 = (Base‘𝑅) | ||
Theorem | 2zrngadd 42416* | The group addition operation of R is the addition of complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ + = (+g‘𝑅) | ||
Theorem | 2zrng0 42417* | The additive identity of R is the complex number 0. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 0 = (0g‘𝑅) | ||
Theorem | 2zrngamgm 42418* | R is an (additive) magma. (Contributed by AV, 6-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Mgm | ||
Theorem | 2zrngasgrp 42419* | R is an (additive) semigroup. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ SGrp | ||
Theorem | 2zrngamnd 42420* | R is an (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Mnd | ||
Theorem | 2zrngacmnd 42421* | R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ CMnd | ||
Theorem | 2zrngagrp 42422* | R is an (additive) group. (Contributed by AV, 6-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Grp | ||
Theorem | 2zrngaabl 42423* | R is an (additive) abelian group. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Abel | ||
Theorem | 2zrngmul 42424* | The ring multiplication operation of R is the multiplication on complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ · = (.r‘𝑅) | ||
Theorem | 2zrngmmgm 42425* | R is a (multiplicative) magma. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑀 ∈ Mgm | ||
Theorem | 2zrngmsgrp 42426* | R is a (multiplicative) semigroup. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑀 ∈ SGrp | ||
Theorem | 2zrngALT 42427* | The ring of integers restricted to the even integers is a (non-unital) ring, the "ring of even integers". Alternate version of 2zrng 42414, based on a restriction of the field of the complex numbers. The proof is based on the facts that the ring of even integers is an additive abelian group (see 2zrngaabl 42423) and a multiplicative semigroup (see 2zrngmsgrp 42426). (Contributed by AV, 11-Feb-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑅 ∈ Rng | ||
Theorem | 2zrngnmlid 42428* | R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 | ||
Theorem | 2zrngnmrid 42429* | R has no multiplicative (right) identity. (Contributed by AV, 12-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 | ||
Theorem | 2zrngnmlid2 42430* | R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 | ||
Theorem | 2zrngnring 42431* | R is not a unital ring. (Contributed by AV, 6-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑅 ∉ Ring | ||
Theorem | cznrnglem 42432 | Lemma for cznrng 42434: The base set of the ring constructed from a ℤ/nℤ structure by replacing the (multiplicative) ring operation by a constant operation is the base set of the ℤ/nℤ structure. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) ⇒ ⊢ 𝐵 = (Base‘𝑋) | ||
Theorem | cznabel 42433 | The ring constructed from a ℤ/nℤ structure by replacing the (multiplicative) ring operation by a constant operation is an abelian group. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ 𝐵) → 𝑋 ∈ Abel) | ||
Theorem | cznrng 42434* | The ring constructed from a ℤ/nℤ structure by replacing the (multiplicative) ring operation by a constant operation is a non-unital ring. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) & ⊢ 0 = (0g‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng) | ||
Theorem | cznnring 42435* | The ring constructed from a ℤ/nℤ structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) & ⊢ 0 = (0g‘𝑌) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐶 ∈ 𝐵) → 𝑋 ∉ Ring) | ||
The "category of non-unital rings" RngCat is the category of all non-unital rings Rng in a universe and non-unital ring homomorphisms RngHomo between these rings. This category is defined as "category restriction" of the category of extensible structures ExtStrCat, which restricts the objects to non-unital rings and the morphisms to the non-unital ring homomorphisms, while the composition of morphisms is preserved, see df-rngc 42438. Alternately, the category of non-unital rings could have been defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, see df-rngcALTV 42439 or dfrngc2 42451. Since we consider only "small categories" (i.e. categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are a subset of the non-unital rings (relativized to a subset or "universe" 𝑢) (𝑢 ∩ Rng), see rngcbas 42444, and the morphisms/arrows are the non-unital ring homomorphisms restricted to this subset of the non-unital rings ( RngHomo ↾ (𝐵 × 𝐵)), see rngchomfval 42445, whereas the composition is the ordinary composition of functions, see rngccofval 42449 and rngcco 42450. By showing that the non-unital ring homomorphisms between non-unital rings are a subcategory subset (⊆cat) of the mappings between base sets of extensible structures, see rnghmsscmap 42453, it can be shown that the non-unital ring homomorphisms between non-unital rings are a subcategory (Subcat) of the category of extensible structures, see rnghmsubcsetc 42456. It follows that the category of non-unital rings RngCat is actually a category, see rngccat 42457 with the identity function as identity arrow, see rngcid 42458. | ||
Syntax | crngc 42436 | Extend class notation to include the category Rng. |
class RngCat | ||
Syntax | crngcALTV 42437 | Extend class notation to include the category Rng. (New usage is discouraged.) |
class RngCatALTV | ||
Definition | df-rngc 42438 | Definition of the category Rng, relativized to a subset 𝑢. This is the category of all non-unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))))) | ||
Definition | df-rngcALTV 42439* | Definition of the category Rng, relativized to a subset 𝑢. This is the category of all non-unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
⊢ RngCatALTV = (𝑢 ∈ V ↦ ⦋(𝑢 ∩ Rng) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 RngHomo 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) | ||
Theorem | rngcvalALTV 42440* | Value of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))) & ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
Theorem | rngcval 42441 | Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) | ||
Theorem | rnghmresfn 42442 | The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.) |
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) | ||
Theorem | rnghmresel 42443 | An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020.) |
⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHomo 𝑌)) | ||
Theorem | rngcbas 42444 | Set of objects of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | ||
Theorem | rngchomfval 42445 | Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) | ||
Theorem | rngchom 42446 | Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RngHomo 𝑌)) | ||
Theorem | elrngchom 42447 | A morphism of non-unital rings is a function. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
Theorem | rngchomfeqhom 42448 | The functionalized Hom-set operation equals the Hom-set operation in the category of non-unital rings (in a universe). (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) | ||
Theorem | rngccofval 42449 | Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | ||
Theorem | rngcco 42450 | Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) & ⊢ (𝜑 → 𝐺:(Base‘𝑌)⟶(Base‘𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
Theorem | dfrngc2 42451 | Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
Theorem | rnghmsscmap2 42452* | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) | ||
Theorem | rnghmsscmap 42453* | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) | ||
Theorem | rnghmsubcsetclem1 42454 | Lemma 1 for rnghmsubcsetc 42456. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
Theorem | rnghmsubcsetclem2 42455* | Lemma 2 for rnghmsubcsetc 42456. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
Theorem | rnghmsubcsetc 42456 | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
Theorem | rngccat 42457 | The category of non-unital rings is a category. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 9-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
Theorem | rngcid 42458 | The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
Theorem | rngcsect 42459 | A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
Theorem | rngcinv 42460 | An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
Theorem | rngciso 42461 | An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIsom 𝑌))) | ||
Theorem | rngcbasALTV 42462 | Set of objects of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | ||
Theorem | rngchomfvalALTV 42463* | Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))) | ||
Theorem | rngchomALTV 42464 | Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RngHomo 𝑌)) | ||
Theorem | elrngchomALTV 42465 | A morphism of non-unital rings is a function. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
Theorem | rngccofvalALTV 42466* | Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) | ||
Theorem | rngccoALTV 42467 | Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋 RngHomo 𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌 RngHomo 𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
Theorem | rngccatidALTV 42468* | Lemma for rngccatALTV 42469. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) | ||
Theorem | rngccatALTV 42469 | The category of non-unital rings is a category. (Contributed by AV, 27-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
Theorem | rngcidALTV 42470 | The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
Theorem | rngcsectALTV 42471 | A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
Theorem | rngcinvALTV 42472 | An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
Theorem | rngcisoALTV 42473 | An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIsom 𝑌))) | ||
Theorem | rngchomffvalALTV 42474* | The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) in maps-to notation for an operation. (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐹 = (Homf ‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))) | ||
Theorem | rngchomrnghmresALTV 42475 | The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Rng ∩ 𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐹 = (Homf ‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = ( RngHomo ↾ (𝐵 × 𝐵))) | ||
Theorem | rngcifuestrc 42476* | The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.) |
⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) | ||
Theorem | funcrngcsetc 42477* | The "natural forgetful functor" from the category of non-unital rings into the category of sets which sends each non-unital ring to its underlying set (base set) and the morphisms (non-unital ring homomorphisms) to mappings of the corresponding base sets. An alternate proof is provided in funcrngcsetcALT 42478, using cofuval2 16719 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 42476, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 16961. (Contributed by AV, 26-Mar-2020.) |
⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
Theorem | funcrngcsetcALT 42478* | Alternate proof of funcrngcsetc 42477, using cofuval2 16719 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 42476, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 16961. Surprisingly, this proof is longer than the direct proof given in funcrngcsetc 42477. (Contributed by AV, 30-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
Theorem | zrinitorngc 42479 | The zero ring is an initial object in the category of nonunital rings. (Contributed by AV, 18-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (InitO‘𝐶)) | ||
Theorem | zrtermorngc 42480 | The zero ring is a terminal object in the category of nonunital rings. (Contributed by AV, 17-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (TermO‘𝐶)) | ||
Theorem | zrzeroorngc 42481 | The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (ZeroO‘𝐶)) | ||
The "category of unital rings" RingCat is the category of all (unital) rings Ring in a universe and (unital) ring homomorphisms RingHom between these rings. This category is defined as "category restriction" of the category of extensible structures ExtStrCat, which restricts the objects to (unital) rings and the morphisms to the (unital) ring homomorphisms, while the composition of morphisms is preserved, see df-ringc 42484. Alternately, the category of unital rings could have been defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, see dfringc2 42497. In the following, we omit the predicate "unital", so that "ring" and "ring homomorphism" (without predicate) always mean "unital ring" and "unital ring homomorphism". Since we consider only "small categories" (i.e., categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are a subset of the rings (relativized to a subset or "universe" 𝑢) (𝑢 ∩ Ring), see ringcbas 42490, and the morphisms/arrows are the ring homomorphisms restricted to this subset of the rings ( RingHom ↾ (𝐵 × 𝐵)), see ringchomfval 42491, whereas the composition is the ordinary composition of functions, see ringccofval 42495 and ringcco 42496. By showing that the ring homomorphisms between rings are a subcategory subset (⊆cat) of the mappings between base sets of extensible structures, see rhmsscmap 42499, it can be shown that the ring homomorphisms between rings are a subcategory (Subcat) of the category of extensible structures, see rhmsubcsetc 42502. It follows that the category of rings RingCat is actually a category, see ringccat 42503 with the identity function as identity arrow, see ringcid 42504. Furthermore, it is shown that the ring homomorphisms between rings are a subcategory subset of the non-unital ring homomorphisms between non-unital rings, see rhmsscrnghm 42505, and that the ring homomorphisms between rings are a subcategory of the category of non-unital rings, see rhmsubcrngc 42508. By this, the restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings, see rngcresringcat 42509: ((RngCat‘𝑈) ↾cat ( RingHom ↾ (𝐵 × 𝐵))) = (RingCat‘𝑈)). Finally, it is shown that the "natural forgetful functor" from the category of rings into the category of sets is the function which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets, see funcringcsetc 42514. | ||
Syntax | cringc 42482 | Extend class notation to include the category Ring. |
class RingCat | ||
Syntax | cringcALTV 42483 | Extend class notation to include the category Ring. (New usage is discouraged.) |
class RingCatALTV | ||
Definition | df-ringc 42484 | Definition of the category Ring, relativized to a subset 𝑢. See also the note in [Lang] p. 91, and the item Rng in [Adamek] p. 478. This is the category of all unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))))) | ||
Definition | df-ringcALTV 42485* | Definition of the category Ring, relativized to a subset 𝑢. This is the category of all rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.) |
⊢ RingCatALTV = (𝑢 ∈ V ↦ ⦋(𝑢 ∩ Ring) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 RingHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) | ||
Theorem | ringcvalALTV 42486* | Value of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RingHom 𝑦))) & ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
Theorem | ringcval 42487 | Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) | ||
Theorem | rhmresfn 42488 | The class of unital ring homomorphisms restricted to subsets of unital rings is a function. (Contributed by AV, 10-Mar-2020.) |
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) | ||
Theorem | rhmresel 42489 | An element of the unital ring homomorphisms restricted to a subset of unital rings is a unital ring homomorphism. (Contributed by AV, 10-Mar-2020.) |
⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RingHom 𝑌)) | ||
Theorem | ringcbas 42490 | Set of objects of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | ||
Theorem | ringchomfval 42491 | Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | ||
Theorem | ringchom 42492 | Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
Theorem | elringchom 42493 | A morphism of unital rings is a function. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
Theorem | ringchomfeqhom 42494 | The functionalized Hom-set operation equals the Hom-set operation in the category of unital rings (in a universe). (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) | ||
Theorem | ringccofval 42495 | Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | ||
Theorem | ringcco 42496 | Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) & ⊢ (𝜑 → 𝐺:(Base‘𝑌)⟶(Base‘𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
Theorem | dfringc2 42497 | Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
Theorem | rhmsscmap2 42498* | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) | ||
Theorem | rhmsscmap 42499* | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) | ||
Theorem | rhmsubcsetclem1 42500 | Lemma 1 for rhmsubcsetc 42502. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |