![]() |
Metamath
Proof Explorer Theorem List (p. 419 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fmtnoprmfac1lem 41801 | Lemma for fmtnoprmfac1 41802: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.) (Proof shortened by AV, 18-Mar-2022.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) | ||
Theorem | fmtnoprmfac1 41802* | Divisor of Fermat number (special form of Euler's result, see fmtnofac1 41807): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
Theorem | fmtnoprmfac2lem1 41803 | Lemma for fmtnoprmfac2 41804. (Contributed by AV, 26-Jul-2021.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1) | ||
Theorem | fmtnoprmfac2 41804* | Divisor of Fermat number (special form of Lucas' result, see fmtnofac2 41806): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+2)+1 where k is a positive integer. (Contributed by AV, 26-Jul-2021.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
Theorem | fmtnofac2lem 41805* | Lemma for fmtnofac2 41806 (Induction step). (Contributed by AV, 30-Jul-2021.) |
⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((((𝑁 ∈ (ℤ≥‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ≥‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))) | ||
Theorem | fmtnofac2 41806* | Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 41807: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
Theorem | fmtnofac1 41807* |
Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of
Fermat Number/Euler's Result", 24-Jul-2021,
https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result):
"Let Fn be a Fermat number. Let
m be divisor of Fn. Then m is in the
form: k*2^(n+1)+1 where k is a positive integer." Here, however, k
must
be a nonnegative integer, because k must be 0 to represent 1 (which is a
divisor of Fn ).
Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 41806. (Contributed by AV, 30-Jul-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
Theorem | fmtno4sqrt 41808 | The floor of the square root of the fourth Fermat number is 256. (Contributed by AV, 28-Jul-2021.) |
⊢ (⌊‘(√‘(FermatNo‘4))) = ;;256 | ||
Theorem | fmtno4prmfac 41809 | If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | ||
Theorem | fmtno4prmfac193 41810 | If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) | ||
Theorem | fmtno4nprmfac193 41811 | 193 is not a (prime) factor of the fourth Fermat number. (Contributed by AV, 24-Jul-2021.) |
⊢ ¬ ;;193 ∥ (FermatNo‘4) | ||
Theorem | fmtno4prm 41812 | The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
⊢ (FermatNo‘4) ∈ ℙ | ||
Theorem | 65537prm 41813 | 65537 is a prime number (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
⊢ ;;;;65537 ∈ ℙ | ||
Theorem | fmtnofz04prm 41814 | The first five Fermat numbers are prime, see remark in [ApostolNT] p. 7. (Contributed by AV, 28-Jul-2021.) |
⊢ (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ) | ||
Theorem | fmtnole4prm 41815 | The first five Fermat numbers are prime. (Contributed by AV, 28-Jul-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 4) → (FermatNo‘𝑁) ∈ ℙ) | ||
Theorem | fmtno5faclem1 41816 | Lemma 1 for fmtno5fac 41819. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 | ||
Theorem | fmtno5faclem2 41817 | Lemma 2 for fmtno5fac 41819. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 | ||
Theorem | fmtno5faclem3 41818 | Lemma 3 for fmtno5fac 41819. (Contributed by AV, 22-Jul-2021.) |
⊢ (;;;;;;;;402025020 + ;;;;;;;26801668) = ;;;;;;;;428826688 | ||
Theorem | fmtno5fac 41819 | The factorisation of the 5 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 22-Jul-2021.) |
⊢ (FermatNo‘5) = (;;;;;;6700417 · ;;641) | ||
Theorem | fmtno5nprm 41820 | The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021.) |
⊢ (FermatNo‘5) ∉ ℙ | ||
Theorem | prmdvdsfmtnof1lem1 41821* | Lemma 1 for prmdvdsfmtnof1 41824. (Contributed by AV, 3-Aug-2021.) |
⊢ 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}, ℝ, < ) & ⊢ 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}, ℝ, < ) ⇒ ⊢ ((𝐹 ∈ (ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺))) | ||
Theorem | prmdvdsfmtnof1lem2 41822 | Lemma 2 for prmdvdsfmtnof1 41824. (Contributed by AV, 3-Aug-2021.) |
⊢ ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐹 = 𝐺)) | ||
Theorem | prmdvdsfmtnof 41823* | The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) |
⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) ⇒ ⊢ 𝐹:ran FermatNo⟶ℙ | ||
Theorem | prmdvdsfmtnof1 41824* | The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.) |
⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) ⇒ ⊢ 𝐹:ran FermatNo–1-1→ℙ | ||
Theorem | prminf2 41825 | The set of prime numbers is infinite. The proof of this variant of prminf 15666 is based on Goldbach's theorem goldbachth 41784 (via prmdvdsfmtnof1 41824 and prmdvdsfmtnof1lem2 41822), see Wikipedia "Fermat number", 4-Aug-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 4-Aug-2021.) |
⊢ ℙ ∉ Fin | ||
Theorem | pwdif 41826* | The difference of two numbers to the same power is the difference of the two numbers multiplied with a finite sum. Generalization of subsq 13012. See Wikipedia "Fermat number", section "Other theorems about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 6-Aug-2021.) (Revised by AV, 19-Aug-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑁) − (𝐵↑𝑁)) = ((𝐴 − 𝐵) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (𝐵↑((𝑁 − 𝑘) − 1))))) | ||
Theorem | pwm1geoserALT 41827* | The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This alternate proof of pwm1geoser 14644 is not based on geoser 14643, but on pwdif 41826 and therefore shorter than the original proof. (Contributed by AV, 19-Aug-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) | ||
Theorem | 2pwp1prm 41828* | For every prime number of the form ((2↑𝑘) + 1) 𝑘 must be a power of 2, see Wikipedia "Fermat number", section "Other theorms about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 7-Aug-2021.) |
⊢ ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) | ||
Theorem | 2pwp1prmfmtno 41829* | Every prime number of the form ((2↑𝑘) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.) |
⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛)) | ||
"In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2^n-1 for some integer n. They are named after Marin Mersenne ... If n is a composite number then so is 2^n-1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2^p-1 for some prime p.", see Wikipedia "Mersenne prime", 16-Aug-2021, https://en.wikipedia.org/wiki/Mersenne_prime. See also definition in [ApostolNT] p. 4. This means that if Mn = 2^n-1 is prime, than n must be prime, too, see mersenne 24997. The reverse direction is not generally valid: If p is prime, then Mp = 2^p-1 needs not be prime, e.g. M11 = 2047 = 23 x 89, see m11nprm 41843. This is an example of sgprmdvdsmersenne 41846, stating that if p with p = 3 modulo 4 (here 11) and q=2p+1 (here 23) are prime, then q divides Mp. "In number theory, a prime number p is a Sophie Germain prime if 2p+1 is also prime. The number 2p+1 associated with a Sophie Germain prime is called a safe prime.", see Wikipedia "Safe and Sophie Germain primes", 21-Aug-2021, https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes. Hence, 11 is a Sophie Germain prime and 2x11+1=23 is its associated safe prime. By sfprmdvdsmersenne 41845, it is shown that if a safe prime q is congruent to 7 modulo 8, then it is a divisor of the Mersenne number with its matching Sophie Germain prime as exponent. The main result of this section, however, is the formal proof of a theorem of S. Ligh and L. Neal in "A note on Mersenne numbers", see lighneal 41853. | ||
Theorem | m2prm 41830 | The second Mersenne number M2 = 3 is a prime number. (Contributed by AV, 16-Aug-2021.) |
⊢ ((2↑2) − 1) ∈ ℙ | ||
Theorem | m3prm 41831 | The third Mersenne number M3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021.) |
⊢ ((2↑3) − 1) ∈ ℙ | ||
Theorem | 2exp5 41832 | Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021.) |
⊢ (2↑5) = ;32 | ||
Theorem | flsqrt 41833 | A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2)))) | ||
Theorem | flsqrt5 41834 | The floor of the square root of a nonnegative number is 5 iff the number is between 25 and 35. (Contributed by AV, 17-Aug-2021.) |
⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((;25 ≤ 𝑋 ∧ 𝑋 < ;36) ↔ (⌊‘(√‘𝑋)) = 5)) | ||
Theorem | 3ndvds4 41835 | 3 does not divide 4. (Contributed by AV, 18-Aug-2021.) |
⊢ ¬ 3 ∥ 4 | ||
Theorem | 139prmALT 41836 | 139 is a prime number. In contrast to 139prm 15878, the proof of this theorem uses 3dvds2dec 15103 for checking the divisibility by 3. Although the proof using 3dvds2dec 15103 is longer (regarding size: 1849 characters compared with 1809 for 139prm 15878), the number of essential steps is smaller (301 compared with 327 for 139prm 15878). (Contributed by Mario Carneiro, 19-Feb-2014.) (Revised by AV, 18-Aug-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ;;139 ∈ ℙ | ||
Theorem | 31prm 41837 | 31 is a prime number. In contrast to 37prm 15875, the proof of this theorem is not based on the "blanket" prmlem2 15874, but on isprm7 15467. Although the checks for non-divisibility by the primes 7 to 23 are not needed, the proof is much longer (regarding size) than the proof of 37prm 15875 (1810 characters compared with 1213 for 37prm 15875). The number of essential steps, however, is much smaller (138 compared with 213 for 37prm 15875). (Contributed by AV, 17-Aug-2021.) (Proof modification is discouraged.) |
⊢ ;31 ∈ ℙ | ||
Theorem | m5prm 41838 | The fifth Mersenne number M5 = 31 is a prime number. (Contributed by AV, 17-Aug-2021.) |
⊢ ((2↑5) − 1) ∈ ℙ | ||
Theorem | 2exp7 41839 | Two to the seventh power is 128. (Contributed by AV, 16-Aug-2021.) |
⊢ (2↑7) = ;;128 | ||
Theorem | 127prm 41840 | 127 is a prime number. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ ;;127 ∈ ℙ | ||
Theorem | m7prm 41841 | The seventh Mersenne number M7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021.) |
⊢ ((2↑7) − 1) ∈ ℙ | ||
Theorem | 2exp11 41842 | Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
⊢ (2↑;11) = ;;;2048 | ||
Theorem | m11nprm 41843 | The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
⊢ ((2↑;11) − 1) = (;89 · ;23) | ||
Theorem | mod42tp1mod8 41844 | If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7) | ||
Theorem | sfprmdvdsmersenne 41845 | If 𝑄 is a safe prime (i.e. 𝑄 = ((2 · 𝑃) + 1) for a prime 𝑃) with 𝑄≡7 (mod 8), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
Theorem | sgprmdvdsmersenne 41846 | If 𝑃 is a Sophie Germain prime (i.e. 𝑄 = ((2 · 𝑃) + 1) is also prime) with 𝑃≡3 (mod 4), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
⊢ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 3) ∧ (𝑄 = ((2 · 𝑃) + 1) ∧ 𝑄 ∈ ℙ)) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
Theorem | lighneallem1 41847 | Lemma 1 for lighneal 41853. (Contributed by AV, 11-Aug-2021.) |
⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) | ||
Theorem | lighneallem2 41848 | Lemma 2 for lighneal 41853. (Contributed by AV, 13-Aug-2021.) |
⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
Theorem | lighneallem3 41849 | Lemma 3 for lighneal 41853. (Contributed by AV, 11-Aug-2021.) |
⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
Theorem | lighneallem4a 41850 | Lemma 1 for lighneallem4 41852. (Contributed by AV, 16-Aug-2021.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘3) ∧ 𝑆 = (((𝐴↑𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆) | ||
Theorem | lighneallem4b 41851* | Lemma 2 for lighneallem4 41852. (Contributed by AV, 16-Aug-2021.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)) ∈ (ℤ≥‘2)) | ||
Theorem | lighneallem4 41852 | Lemma 3 for lighneal 41853. (Contributed by AV, 16-Aug-2021.) |
⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
Theorem | lighneal 41853 | If a power of a prime 𝑃 (i.e. 𝑃↑𝑀) is of the form 2↑𝑁 − 1, then 𝑁 must be prime and 𝑀 must be 1. Generalization of mersenne 24997 (where 𝑀 = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021.) |
⊢ (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ)) | ||
Theorem | modexp2m1d 41854 | The square of an integer which is -1 modulo a number greater than 1 is 1 modulo the same modulus. (Contributed by AV, 5-Jul-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 1 < 𝐸) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴↑2) mod 𝐸) = 1) | ||
Theorem | proththdlem 41855 | Lemma for proththd 41856. (Contributed by AV, 4-Jul-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) ⇒ ⊢ (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)) | ||
Theorem | proththd 41856* | Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 15657), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) & ⊢ (𝜑 → 𝐾 < (2↑𝑁)) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ℙ) | ||
Theorem | 5tcu2e40 41857 | 5 times the cube of 2 is 40. (Contributed by AV, 4-Jul-2020.) |
⊢ (5 · (2↑3)) = ;40 | ||
Theorem | 3exp4mod41 41858 | 3 to the fourth power is -1 modulo 41. (Contributed by AV, 5-Jul-2020.) |
⊢ ((3↑4) mod ;41) = (-1 mod ;41) | ||
Theorem | 41prothprmlem1 41859 | Lemma 1 for 41prothprm 41861. (Contributed by AV, 4-Jul-2020.) |
⊢ 𝑃 = ;41 ⇒ ⊢ ((𝑃 − 1) / 2) = ;20 | ||
Theorem | 41prothprmlem2 41860 | Lemma 2 for 41prothprm 41861. (Contributed by AV, 5-Jul-2020.) |
⊢ 𝑃 = ;41 ⇒ ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) | ||
Theorem | 41prothprm 41861 | 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
⊢ 𝑃 = ;41 ⇒ ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) | ||
Even and odd numbers can be characterized in many different ways. In the following, the definition of even and odd numbers is based on the fact that dividing an even number (resp. an odd number increased by 1) by 2 is an integer, see df-even 41864 and df-odd 41865. Alternate definitions resp. charaterizations are provided in dfeven2 41887, dfeven3 41895, dfeven4 41876 and in dfodd2 41874, dfodd3 41888, dfodd4 41896, dfodd5 41897, dfodd6 41875. Each characterization can be useful (and used) in an appropriate context, e.g. dfodd6 41875 in opoeALTV 41919 and dfodd3 41888 in oddprmALTV 41923. Having a fixed definition for even and odd numbers, and alternate characterizations as theorems, advanced theorems about even and/or odd numbers can be expressed more explicitly, and the appropriate characterization can be chosen for their proof, which may become clearer and sometimes also shorter (see, for example, divgcdoddALTV 41918 and divgcdodd 15469). | ||
Syntax | ceven 41862 | Extend the definition of a class to include the set of even numbers. |
class Even | ||
Syntax | codd 41863 | Extend the definition of a class to include the set of odd numbers. |
class Odd | ||
Definition | df-even 41864 | Define the set of even numbers. (Contributed by AV, 14-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | ||
Definition | df-odd 41865 | Define the set of odd numbers. (Contributed by AV, 14-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} | ||
Theorem | iseven 41866 | The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | ||
Theorem | isodd 41867 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | ||
Theorem | evenz 41868 | An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) | ||
Theorem | oddz 41869 | An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) | ||
Theorem | evendiv2z 41870 | The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) | ||
Theorem | oddp1div2z 41871 | The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ) | ||
Theorem | oddm1div2z 41872 | The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ((𝑍 − 1) / 2) ∈ ℤ) | ||
Theorem | isodd2 41873 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd number decreased by 1 and then divided by 2 is still an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 − 1) / 2) ∈ ℤ)) | ||
Theorem | dfodd2 41874 | Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} | ||
Theorem | dfodd6 41875* | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)} | ||
Theorem | dfeven4 41876* | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} | ||
Theorem | evenm1odd 41877 | The predecessor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Even → (𝑍 − 1) ∈ Odd ) | ||
Theorem | evenp1odd 41878 | The successor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Even → (𝑍 + 1) ∈ Odd ) | ||
Theorem | oddp1eveni 41879 | The successor of an odd number is even. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Odd → (𝑍 + 1) ∈ Even ) | ||
Theorem | oddm1eveni 41880 | The predecessor of an odd number is even. (Contributed by AV, 6-Jul-2020.) |
⊢ (𝑍 ∈ Odd → (𝑍 − 1) ∈ Even ) | ||
Theorem | evennodd 41881 | An even number is not an odd number. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Even → ¬ 𝑍 ∈ Odd ) | ||
Theorem | oddneven 41882 | An odd number is not an even number. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ¬ 𝑍 ∈ Even ) | ||
Theorem | enege 41883 | The negative of an even number is even. (Contributed by AV, 20-Jun-2020.) |
⊢ (𝐴 ∈ Even → -𝐴 ∈ Even ) | ||
Theorem | onego 41884 | The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020.) |
⊢ (𝐴 ∈ Odd → -𝐴 ∈ Odd ) | ||
Theorem | m1expevenALTV 41885 | Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.) |
⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) | ||
Theorem | m1expoddALTV 41886 | Exponentiation of -1 by an odd power. (Contributed by AV, 6-Jul-2020.) |
⊢ (𝑁 ∈ Odd → (-1↑𝑁) = -1) | ||
Theorem | dfeven2 41887 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧} | ||
Theorem | dfodd3 41888 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | ||
Theorem | iseven2 41889 | The predicate "is an even number". An even number is an integer which is divisible by 2. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ 2 ∥ 𝑍)) | ||
Theorem | isodd3 41890 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ¬ 2 ∥ 𝑍)) | ||
Theorem | 2dvdseven 41891 | 2 divides an even number. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Even → 2 ∥ 𝑍) | ||
Theorem | 2ndvdsodd 41892 | 2 does not divide an odd number. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ¬ 2 ∥ 𝑍) | ||
Theorem | 2dvdsoddp1 41893 | 2 divides an odd number increased by 1. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 + 1)) | ||
Theorem | 2dvdsoddm1 41894 | 2 divides an odd number decreased by 1. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 − 1)) | ||
Theorem | dfeven3 41895 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 0} | ||
Theorem | dfodd4 41896 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 1} | ||
Theorem | dfodd5 41897 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) ≠ 0} | ||
Theorem | zefldiv2ALTV 41898 | The floor of an even number divided by 2 is equal to the even number divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
⊢ (𝑁 ∈ Even → (⌊‘(𝑁 / 2)) = (𝑁 / 2)) | ||
Theorem | zofldiv2ALTV 41899 | The floor of an odd numer divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) | ||
Theorem | oddflALTV 41900 | Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 18-Jun-2020.) |
⊢ (𝐾 ∈ Odd → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |