![]() |
Metamath
Proof Explorer Theorem List (p. 417 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | faovcl 41601 | Closure law for an operation, analogous to fovcl 6807. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶) | ||
Theorem | aovmpt4g 41602* | Value of a function given by the "maps to" notation, analogous to ovmpt4g 6825. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) | ||
Theorem | aoprssdm 41603* | Domain of closure of an operation. In contrast to oprssdm 6857, no additional property for S (¬ ∅ ∈ 𝑆) is required! (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) ⇒ ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 | ||
Theorem | ndmaovcl 41604 | The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl 6861 where it is required that the domain contains the empty set (∅ ∈ 𝑆). (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ dom 𝐹 = (𝑆 × 𝑆) & ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) & ⊢ ((𝐴𝐹𝐵)) ∈ V ⇒ ⊢ ((𝐴𝐹𝐵)) ∈ 𝑆 | ||
Theorem | ndmaovrcl 41605 | Reverse closure law, in contrast to ndmovrcl 6862 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional asumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | ||
Theorem | ndmaovcom 41606 | Any operation is commutative outside its domain, analogous to ndmovcom 6863. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) ) | ||
Theorem | ndmaovass 41607 | Any operation is associative outside its domain. In contrast to ndmovass 6864 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = ((𝐴𝐹 ((𝐵𝐹𝐶)) )) ) | ||
Theorem | ndmaovdistr 41608 | Any operation is distributive outside its domain. In contrast to ndmovdistr 6865 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
⊢ dom 𝐹 = (𝑆 × 𝑆) & ⊢ dom 𝐺 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝐺 ((𝐵𝐹𝐶)) )) = (( ((𝐴𝐺𝐵)) 𝐹 ((𝐴𝐺𝐶)) )) ) | ||
Theorem | an4com24 41609 | Rearrangement of 4 conjuncts: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜒 ∧ 𝜓))) | ||
Theorem | 3an4ancom24 41610 | Commutative law for a conjunction with a triple conjunction: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜃 ∧ 𝜒) ∧ 𝜓)) | ||
Theorem | 4an21 41611 | Rearrangement of 4 conjuncts with a triple conjunction. (Contributed by AV, 4-Mar-2022.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) | ||
Syntax | cnelbr 41612 | Extend wff notation to include the 'not elemet of' relation. |
class _∉ | ||
Definition | df-nelbr 41613* | Define negated membership as binary relation. Analogous to df-eprel 5058 (the epsilon relation). (Contributed by AV, 26-Dec-2021.) |
⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} | ||
Theorem | dfnelbr2 41614 | Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021.) |
⊢ _∉ = ((V × V) ∖ E ) | ||
Theorem | nelbr 41615 | The binary relation of a set not being a member of another set. (Contributed by AV, 26-Dec-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵)) | ||
Theorem | nelbrim 41616 | If a set is related to another set by the negated membership relation, then it is not a member of the other set. The other direction of the implication is not generally true, because if 𝐴 is a proper class, then ¬ 𝐴 ∈ 𝐵 would be true, but not 𝐴 _∉ 𝐵. (Contributed by AV, 26-Dec-2021.) |
⊢ (𝐴 _∉ 𝐵 → ¬ 𝐴 ∈ 𝐵) | ||
Theorem | nelbrnel 41617 | A set is related to another set by the negated membership relation iff it is not a member of the other set. (Contributed by AV, 26-Dec-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 _∉ 𝐵 ↔ 𝐴 ∉ 𝐵)) | ||
Theorem | nelbrnelim 41618 | If a set is related to another set by the negated membership relation, then it is not a member of the other set. (Contributed by AV, 26-Dec-2021.) |
⊢ (𝐴 _∉ 𝐵 → 𝐴 ∉ 𝐵) | ||
Theorem | ralralimp 41619* | Selecting one of two alternatives within a restricted generalization if one of the alternatives is false. (Contributed by AV, 6-Sep-2018.) (Proof shortened by AV, 13-Oct-2018.) |
⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (∀𝑥 ∈ 𝐴 ((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) | ||
Theorem | elprneb 41620 | An element of a proper unordered pair is the first element iff it is not the second element. (Contributed by AV, 18-Jun-2020.) |
⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐵 ≠ 𝐶) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) | ||
Theorem | otiunsndisjX 41621* | The union of singletons consisting of ordered triples which have distinct first and third components are disjunct. (Contributed by Alexander van der Vekens, 10-Mar-2018.) |
⊢ (𝐵 ∈ 𝑋 → Disj 𝑎 ∈ 𝑉 ∪ 𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉}) | ||
Theorem | fvifeq 41622 | Equality of function values with conditional arguments, see also fvif 6242. (Contributed by Alexander van der Vekens, 21-May-2018.) |
⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶))) | ||
Theorem | rnfdmpr 41623 | The range of a one-to-one function 𝐹 of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) | ||
Theorem | imarnf1pr 41624 | The image of the range of a function 𝐹 under a function 𝐸 if 𝐹 is a function of a pair into the domain of 𝐸. (Contributed by Alexander van der Vekens, 2-Feb-2018.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵})) | ||
Theorem | funop1 41625* | A function is an ordered pair iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) |
⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) | ||
Theorem | fun2dmnopgexmpl 41626 | A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020.) |
⊢ (𝐺 = {〈0, 1〉, 〈1, 1〉} → ¬ 𝐺 ∈ (V × V)) | ||
Theorem | opabresex0d 41627* | A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 1-Jan-2021.) |
⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) | ||
Theorem | opabbrfex0d 41628* | A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021.) |
⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) | ||
Theorem | opabresexd 41629* | A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) |
⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) | ||
Theorem | opabbrfexd 41630* | A collection of ordered pairs, the second component being a function, is a set. (Contributed by AV, 15-Jan-2021.) |
⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) | ||
Theorem | fvmptrab 41631* | Value of a function mapping a set to a class abstraction restricting a class depending on the argument of the function. More general version of fvmptrabfv 6348, but relying on the fact that out-of-domain arguments evaluate to the empty set, which relies on set.mm's particular encoding. (Contributed by AV, 14-Feb-2022.) |
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) & ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑋 → 𝑀 = 𝑁) & ⊢ (𝑋 ∈ 𝑉 → 𝑁 ∈ V) & ⊢ (𝑋 ∉ 𝑉 → 𝑁 = ∅) ⇒ ⊢ (𝐹‘𝑋) = {𝑦 ∈ 𝑁 ∣ 𝜓} | ||
Theorem | fvmptrabdm 41632* | Value of a function mapping a set to a class abstraction restricting the value of another function. See also fvmptrabfv 6348. (Suggested by BJ, 18-Feb-2022.) (Contributed by AV, 18-Feb-2022.) |
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑}) & ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) & ⊢ (𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) ⇒ ⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} | ||
Theorem | leltletr 41633 | Transitive law, weaker form of lelttr 10166. (Contributed by AV, 14-Oct-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐶)) | ||
Theorem | cnambpcma 41634 | ((a-b)+c)-a = c-a holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) + 𝐶) − 𝐴) = (𝐶 − 𝐵)) | ||
Theorem | cnapbmcpd 41635 | ((a+b)-c)+d = ((a+d)+b)-c holds for complex numbers a,b,c,d. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) − 𝐶) + 𝐷) = (((𝐴 + 𝐷) + 𝐵) − 𝐶)) | ||
Theorem | leaddsuble 41636 | Addition and subtraction on one side of 'less or equal'. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) ≤ 𝐴)) | ||
Theorem | 2leaddle2 41637 | If two real numbers are less than a third real number, the sum of the real numbers is less than twice the third real number. (Contributed by Alexander van der Vekens, 21-May-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶 ∧ 𝐵 < 𝐶) → (𝐴 + 𝐵) < (2 · 𝐶))) | ||
Theorem | ltnltne 41638 | Variant of trichotomy law for 'less than'. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴))) | ||
Theorem | p1lep2 41639 | A real number increasd by 1 is less than or equal to the number increased by 2. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ≤ (𝑁 + 2)) | ||
Theorem | ltsubsubaddltsub 41640 | If the result of subtracting two numbers is greater than a number, the result of adding one of these subtracted numbers to the number is less than the result of subtracting the other subtracted number only. (Contributed by Alexander van der Vekens, 9-Jun-2018.) |
⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝐽 < ((𝐿 − 𝑀) − 𝑁) ↔ (𝐽 + 𝑀) < (𝐿 − 𝑁))) | ||
Theorem | zm1nn 41641 | An integer minus 1 is positive under certain circumstances. (Contributed by Alexander van der Vekens, 9-Jun-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽 ∧ 𝐽 < ((𝐿 − 𝑁) − 1)) → (𝐿 − 1) ∈ ℕ)) | ||
Theorem | nn0resubcl 41642 | Closure law for subtraction of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 − 𝐵) ∈ ℝ) | ||
Theorem | zgeltp1eq 41643 | If an integer is between another integer and its successor, the integer is equal to the other integer. (Contributed by AV, 30-May-2020.) |
⊢ ((𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 ≤ 𝐼 ∧ 𝐼 < (𝐴 + 1)) → 𝐼 = 𝐴)) | ||
Theorem | 1t10e1p1e11 41644 | 11 is 1 times 10 to the power of 1, plus 1. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
⊢ ;11 = ((1 · (;10↑1)) + 1) | ||
Theorem | 1t10e1p1e11OLD 41645 | Obsolete version of 1t10e1p1e11 41644 as of 9-Sep-2021. (Contributed by AV, 4-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ;11 = ((1 · (10↑1)) + 1) | ||
Theorem | deccarry 41646 | Add 1 to a 2 digit number with carry. This is a special case of decsucc 11588, but in closed form. As observed by ML, this theorem allows for carrying the 1 down multiple decimal constructors, so we can carry the 1 multiple times down a multi-digit number, e.g. by applying this theorem three times we get (;;999 + 1) = ;;;1000. (Contributed by AV, 4-Aug-2020.) (Revised by ML, 8-Aug-2020.) (Proof shortened by AV, 10-Sep-2021.) |
⊢ (𝐴 ∈ ℕ → (;𝐴9 + 1) = ;(𝐴 + 1)0) | ||
Theorem | eluzge0nn0 41647 | If an integer is greater than or equal to a nonnegative integer, then it is a nonnegative integer. (Contributed by Alexander van der Vekens, 27-Aug-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (0 ≤ 𝑀 → 𝑁 ∈ ℕ0)) | ||
Theorem | nltle2tri 41648 | Negated extended trichotomy law for 'less than' and 'less than or equal to'. (Contributed by AV, 18-Jul-2020.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ¬ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴)) | ||
Theorem | ssfz12 41649 | Subset relationship for finite sets of sequential integers. (Contributed by Alexander van der Vekens, 16-Mar-2018.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
Theorem | elfz2z 41650 | Membership of an integer in a finite set of sequential integers starting at 0. (Contributed by Alexander van der Vekens, 25-May-2018.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | ||
Theorem | 2elfz3nn0 41651 | If there are two elements in a finite set of sequential integers starting at 0, these two elements as well as the upper bound are nonnegative integers. (Contributed by Alexander van der Vekens, 7-Apr-2018.) |
⊢ ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) | ||
Theorem | fz0addcom 41652 | The addition of two members of a finite set of sequential integers starting at 0 is commutative. (Contributed by Alexander van der Vekens, 22-May-2018.) (Revised by Alexander van der Vekens, 9-Jun-2018.) |
⊢ ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
Theorem | 2elfz2melfz 41653 | If the sum of two integers of a 0 based finite set of sequential integers is greater than the upper bound, the difference between one of the integers and the difference between the upper bound and the other integer is in the 0 based finite set of sequential integers with the first integer as upper bound. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by Alexander van der Vekens, 31-May-2018.) |
⊢ ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁 − 𝐴)) ∈ (0...𝐴))) | ||
Theorem | fz0addge0 41654 | The sum of two integers in 0 based finite sets of sequential integers is greater than or equal to zero. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ ((𝐴 ∈ (0...𝑀) ∧ 𝐵 ∈ (0...𝑁)) → 0 ≤ (𝐴 + 𝐵)) | ||
Theorem | elfzlble 41655 | Membership of an integer in a finite set of sequential integers with the integer as upper bound and a lower bound less than or equal to the integer. (Contributed by AV, 21-Oct-2018.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ((𝑁 − 𝑀)...𝑁)) | ||
Theorem | elfzelfzlble 41656 | Membership of an element of a finite set of sequential integers in a finite set of sequential integers with the same upper bound and a lower bound less than the upper bound. (Contributed by AV, 21-Oct-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑁 < (𝑀 + 𝐾)) → 𝐾 ∈ ((𝑁 − 𝑀)...𝑁)) | ||
Theorem | fzopred 41657 | Join a predecessor to the beginning of an open integer interval. Generalization of fzo0sn0fzo1 12597. (Contributed by AV, 14-Jul-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁))) | ||
Theorem | fzopredsuc 41658 | Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if 𝑁 = 𝑀 (then (𝑀...𝑁) = {𝑀} = ({𝑀} ∪ ∅) ∪ {𝑀}). (Contributed by AV, 14-Jul-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})) | ||
Theorem | 1fzopredsuc 41659 | Join 0 and a successor to the beginning and the end of an open integer interval starting at 1. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁})) | ||
Theorem | el1fzopredsuc 41660 | An element of an open integer interval starting at 1 joined by 0 and a successor at the beginning and the end is either 0 or an element of the open integer interval or the successor. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))) | ||
Theorem | subsubelfzo0 41661 | Subtracting a difference from a number which is not less than the difference results in a bounded nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁 − 𝐴)) → (𝐼 − (𝑁 − 𝐴)) ∈ (0..^𝐴)) | ||
Theorem | fzoopth 41662 | A half-open integer range can represent an ordered pair, analogous to fzopth 12416. (Contributed by Alexander van der Vekens, 1-Jul-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽 ∧ 𝑁 = 𝐾))) | ||
Theorem | 2ffzoeq 41663* | Two functions over a half-open range of nonnegative integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 1-Jul-2018.) |
⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋 ∧ 𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹‘𝑖) = (𝑃‘𝑖)))) | ||
Theorem | m1mod0mod1 41664 | An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1)) | ||
Theorem | elmod2 41665 | An integer modulo 2 is either 0 or 1. (Contributed by AV, 24-May-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ {0, 1}) | ||
Theorem | smonoord 41666* | Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord 12871 (except that the case 𝑀 = 𝑁 must be excluded). Duplicate of monoords 39825? (Contributed by AV, 12-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) < (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁)) | ||
Theorem | fsummsndifre 41667* | A finite sum with one of its integer summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 ∈ ℝ) | ||
Theorem | fsumsplitsndif 41668* | Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) | ||
Theorem | fsummmodsndifre 41669* | A finite sum of summands modulo a positive number with one of its summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) ∈ ℝ) | ||
Theorem | fsummmodsnunz 41670* | A finite sum of summands modulo a positive number with an additional summand is an integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) | ||
Theorem | setsidel 41671 | The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) | ||
Theorem | setsnidel 41672 | The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) | ||
Theorem | setsv 41673 | The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | ||
Based on the theorems of the fourierdlem* series of GS's mathbox. | ||
Syntax | ciccp 41674 | Extend class notation with the partitions of a closed interval of extended reals. |
class RePart | ||
Definition | df-iccp 41675* | Define partitions of a closed interval of extended reals. Such partitions are finite increasing sequences of extended reals. (Contributed by AV, 8-Jul-2020.) |
⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | ||
Theorem | iccpval 41676* | Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.) |
⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | ||
Theorem | iccpart 41677* | A special partition. Corresponds to fourierdlem2 40644 in GS's mathbox. (Contributed by AV, 9-Jul-2020.) |
⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | ||
Theorem | iccpartimp 41678 | Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) | ||
Theorem | iccpartres 41679 | The restriction of a partition is a partition. (Contributed by AV, 16-Jul-2020.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘(𝑀 + 1))) → (𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀)) | ||
Theorem | iccpartxr 41680 | If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) | ||
Theorem | iccpartgtprec 41681 | If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) | ||
Theorem | iccpartipre 41682 | If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) | ||
Theorem | iccpartiltu 41683* | If there is a partition, then all intermediate points are strictly less than the upper bound. (Contributed by AV, 12-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) | ||
Theorem | iccpartigtl 41684* | If there is a partition, then all intermediate points are strictly greater than the lower bound. (Contributed by AV, 12-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖)) | ||
Theorem | iccpartlt 41685 | If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 40653 in GS's mathbox. (Contributed by AV, 12-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) | ||
Theorem | iccpartltu 41686* | If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) | ||
Theorem | iccpartgtl 41687* | If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) | ||
Theorem | iccpartgt 41688* | If there is a partition, then all intermediate points and the bounds are strictly ordered. (Contributed by AV, 18-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))) | ||
Theorem | iccpartleu 41689* | If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) | ||
Theorem | iccpartgel 41690* | If there is a partition, then all intermediate points and the upper and the lower bound are greater than or equal to the lower bound. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃‘𝑖)) | ||
Theorem | iccpartrn 41691 | If there is a partition, then all intermediate points and bounds are contained in an closed interval of extended reals. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ran 𝑃 ⊆ ((𝑃‘0)[,](𝑃‘𝑀))) | ||
Theorem | iccpartf 41692 | The range of the partition is between its starting point and its ending point. Corresponds to fourierdlem15 40657 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → 𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃‘𝑀))) | ||
Theorem | iccpartel 41693 | If there is a partition, then all intermediate points and bounds are contained in an closed interval of extended reals. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ (0...𝑀)) → (𝑃‘𝐼) ∈ ((𝑃‘0)[,](𝑃‘𝑀))) | ||
Theorem | iccelpart 41694* | An element of any partitioned half opened interval of extended reals is an element of a part of this partition. (Contributed by AV, 18-Jul-2020.) |
⊢ (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) | ||
Theorem | iccpartiun 41695* | A half opened interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ((𝑃‘0)[,)(𝑃‘𝑀)) = ∪ 𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
Theorem | icceuelpartlem 41696 | Lemma for icceuelpart 41697. (Contributed by AV, 19-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃‘𝐽)))) | ||
Theorem | icceuelpart 41697* | An element of a partitioned half opened interval of extended reals is an element of exactly one part of the partition. (Contributed by AV, 19-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
Theorem | iccpartdisj 41698* | The segments of a partitioned half opened interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → Disj 𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
Theorem | iccpartnel 41699 | A point of a partition is not an element of any open interval determined by the partition. Corresponds to fourierdlem12 40654 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 8-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑃) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑃‘𝐼)(,)(𝑃‘(𝐼 + 1)))) | ||
Theorem | fargshiftfv 41700* | If a class is a function, then the values of the "shifted function" correspond to the function values of the class. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
⊢ 𝐺 = (𝑥 ∈ (0..^(#‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑋 ∈ (0..^𝑁) → (𝐺‘𝑋) = (𝐹‘(𝑋 + 1)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |