HomeHome Metamath Proof Explorer
Theorem List (p. 409 of 429)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27903)
  Hilbert Space Explorer  Hilbert Space Explorer
(27904-29428)
  Users' Mathboxes  Users' Mathboxes
(29429-42879)
 

Theorem List for Metamath Proof Explorer - 40801-40900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremetransclem32 40801* This is the proof for the last equation in the proof of the derivative calculated in [Juillerat] p. 12, just after equation *(6) . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))       (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ 0))
 
Theoremetransclem33 40802* 𝐹 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):𝑋⟶ℂ)
 
Theoremetransclem34 40803* The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})       (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
 
Theoremetransclem35 40804* 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is case 2 of the proof in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})    &   𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0))       (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
 
Theoremetransclem36 40805* The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   (𝜑𝐽𝑋)    &   (𝜑𝐽 ∈ ℤ)    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})       (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) ∈ ℤ)
 
Theoremetransclem37 40806* (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})    &   (𝜑𝐽 ∈ (0...𝑀))    &   (𝜑𝐽𝑋)       (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))
 
Theoremetransclem38 40807* 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. if it is not the case that 𝐼 = 𝑃 − 1 and 𝐽 = 0. This is case 1 and the second part of case 2 proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝐼 ∈ ℕ0)    &   (𝜑𝐽 ∈ (0...𝑀))    &   (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})       (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))
 
Theoremetransclem39 40808* 𝐺 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))       (𝜑𝐺:ℝ⟶ℂ)
 
Theoremetransclem40 40809* The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
 
Theoremetransclem41 40810* 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is the first part of case 2: proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (!‘𝑀) < 𝑃)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))       (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
 
Theoremetransclem42 40811* The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐽𝑋)    &   (𝜑𝐽 ∈ ℤ)       (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) ∈ ℤ)
 
Theoremetransclem43 40812* 𝐺 is a continuous function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐺 = (𝑥𝑋 ↦ Σ𝑖 ∈ (0...𝑅)(((𝑆 D𝑛 𝐹)‘𝑖)‘𝑥))       (𝜑𝐺 ∈ (𝑋cn→ℂ))
 
Theoremetransclem44 40813* The given finite sum is nonzero. This is the claim proved after equation (7) in [Juillerat] p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐴:ℕ0⟶ℤ)    &   (𝜑 → (𝐴‘0) ≠ 0)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (abs‘(𝐴‘0)) < 𝑃)    &   (𝜑 → (!‘𝑀) < 𝑃)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))       (𝜑𝐾 ≠ 0)
 
Theoremetransclem45 40814* 𝐾 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝐴:ℕ0⟶ℤ)    &   𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))       (𝜑𝐾 ∈ ℤ)
 
Theoremetransclem46 40815* This is the proof for equation *(7) in [Juillerat] p. 12. The proven equality will lead to a contradiction, because the left-hand side goes to 0 for large 𝑃, but the right-hand side is a nonzero integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))    &   (𝜑 → (𝑄‘e) = 0)    &   𝐴 = (coeff‘𝑄)    &   𝑀 = (deg‘𝑄)    &   (𝜑 → ℝ ⊆ ℝ)    &   (𝜑 → ℝ ∈ {ℝ, ℂ})    &   (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))    &   (𝜑𝑃 ∈ ℕ)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)    &   𝑅 = ((𝑀 · 𝑃) + (𝑃 − 1))    &   𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))    &   𝑂 = (𝑥 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑥) · (𝐺𝑥)))       (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
 
Theoremetransclem47 40816* e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))    &   (𝜑 → (𝑄‘e) = 0)    &   𝐴 = (coeff‘𝑄)    &   (𝜑 → (𝐴‘0) ≠ 0)    &   𝑀 = (deg‘𝑄)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (abs‘(𝐴‘0)) < 𝑃)    &   (𝜑 → (!‘𝑀) < 𝑃)    &   (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)    &   𝐾 = (𝐿 / (!‘(𝑃 − 1)))       (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
 
Theoremetransclem48 40817* e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. In this lemma, a large enough prime 𝑝 is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 28-Sep-2020.)
(𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))    &   (𝜑 → (𝑄‘e) = 0)    &   𝐴 = (coeff‘𝑄)    &   (𝜑 → (𝐴‘0) ≠ 0)    &   𝑀 = (deg‘𝑄)    &   𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))    &   𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))    &   𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )    &   𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )       (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
 
Theoremetransc 40818 e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 28-Sep-2020.)
e ∈ (ℂ ∖ 𝔸)
 
20.32.18  n-dimensional Euclidean space
 
Theoremrrxtopn 40819* The topology of the generalized real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼𝑉)       (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))
 
Theoremrrxngp 40820 Generalized Euclidean real spaces are normed groups. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝐼𝑉 → (ℝ^‘𝐼) ∈ NrmGrp)
 
Theoremrrxbasefi 40821 The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑𝑚 𝑋) for the development of the Lebeasgue measure theory for n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   𝐻 = (ℝ^‘𝑋)    &   𝐵 = (Base‘𝐻)       (𝜑𝐵 = (ℝ ↑𝑚 𝑋))
 
Theoremrrxtps 40822 Generalized Euclidean real spaces are topological spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝐼𝑉 → (ℝ^‘𝐼) ∈ TopSp)
 
Theoremrrxdsfi 40823* The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐻 = (ℝ^‘𝐼)    &   𝐵 = (ℝ ↑𝑚 𝐼)       (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
 
Theoremrrxtopnfi 40824* The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)       (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
 
Theoremrrxmetfi 40825 Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐷 = (dist‘(ℝ^‘𝐼))       (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)))
 
Theoremrrxtopon 40826 The topology on Generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐽 = (TopOpen‘(ℝ^‘𝐼))       (𝐼𝑉𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼))))
 
Theoremrrxtop 40827 The topology on Generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐽 = (TopOpen‘(ℝ^‘𝐼))       (𝐼𝑉𝐽 ∈ Top)
 
Theoremrrndistlt 40828* Given two points in the space of n-dimensional real numbers, if every component is closer than 𝐸 then the distance between the two points is less then ((√‘𝑛) · 𝐸) (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)    &   (𝜑𝐼 ≠ ∅)    &   𝑁 = (#‘𝐼)    &   (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))    &   (𝜑𝑌 ∈ (ℝ ↑𝑚 𝐼))    &   ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)    &   (𝜑𝐸 ∈ ℝ+)    &   𝐷 = (dist‘(ℝ^‘𝐼))       (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))
 
Theoremrrxtoponfi 40829 The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐽 = (TopOpen‘(ℝ^‘𝐼))       (𝐼 ∈ Fin → 𝐽 ∈ (TopOn‘(ℝ ↑𝑚 𝐼)))
 
Theoremrrxunitopnfi 40830 The base set of the standard topology on the space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) = (ℝ ↑𝑚 𝑋))
 
Theoremrrxtopn0 40831 The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(TopOpen‘(ℝ^‘∅)) = 𝒫 {∅}
 
Theoremqndenserrnbllem 40832* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)    &   (𝜑𝐼 ≠ ∅)    &   (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))    &   𝐷 = (dist‘(ℝ^‘𝐼))    &   (𝜑𝐸 ∈ ℝ+)       (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
 
Theoremqndenserrnbl 40833* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)    &   (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))    &   𝐷 = (dist‘(ℝ^‘𝐼))    &   (𝜑𝐸 ∈ ℝ+)       (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
 
Theoremrrxtopn0b 40834 The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(TopOpen‘(ℝ^‘∅)) = {∅, {∅}}
 
Theoremqndenserrnopnlem 40835* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)    &   𝐽 = (TopOpen‘(ℝ^‘𝐼))    &   (𝜑𝑉𝐽)    &   (𝜑𝑋𝑉)    &   𝐷 = (dist‘(ℝ^‘𝐼))       (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉)
 
Theoremqndenserrnopn 40836* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)    &   𝐽 = (TopOpen‘(ℝ^‘𝐼))    &   (𝜑𝑉𝐽)    &   (𝜑𝑉 ≠ ∅)       (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉)
 
Theoremqndenserrn 40837 n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)    &   𝐽 = (TopOpen‘(ℝ^‘𝐼))       (𝜑 → ((cls‘𝐽)‘(ℚ ↑𝑚 𝐼)) = (ℝ ↑𝑚 𝐼))
 
Theoremrrxsnicc 40838* A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝐴 ∈ (ℝ ↑𝑚 𝑋))       (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
 
Theoremrrnprjdstle 40839 The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐹:𝑋⟶ℝ)    &   (𝜑𝐺:𝑋⟶ℝ)    &   (𝜑𝐼𝑋)    &   𝐷 = (dist‘(ℝ^‘𝑋))       (𝜑 → (abs‘((𝐹𝐼) − (𝐺𝐼))) ≤ (𝐹𝐷𝐺))
 
Theoremrrndsmet 40840* 𝐷 is a metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))       (𝜑𝐷 ∈ (Met‘(ℝ ↑𝑚 𝑋)))
 
Theoremrrndsxmet 40841* 𝐷 is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))       (𝜑𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
 
Theoremioorrnopnlem 40842* The a point in an indexed product of open intervals is contained in an open ball that is contained in the indexed product of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))    &   𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))    &   𝐸 = inf(𝐻, ℝ, < )    &   𝑉 = (𝐹(ball‘𝐷)𝐸)    &   𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))       (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
 
Theoremioorrnopn 40843* The indexed product of open intervals is an open set in (ℝ^‘𝑋). (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)       (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
 
Theoremioorrnopnxrlem 40844* Given a point 𝐹 that belongs to an indexed product of (possibly unbounded) open intervals, then 𝐹 belongs to an open product of bounded open intervals that's a subset of the original indexed product. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ*)    &   (𝜑𝐵:𝑋⟶ℝ*)    &   (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))    &   𝐿 = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))    &   𝑅 = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))    &   𝑉 = X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖))       (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
 
Theoremioorrnopnxr 40845* The indexed product of open intervals is an open set in (ℝ^‘𝑋). Similar to ioorrnopn 40843 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ*)    &   (𝜑𝐵:𝑋⟶ℝ*)       (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
 
20.32.19  Basic measure theory
 
20.32.19.1  σ-Algebras

Proofs for most of the theorems in section 111 of [Fremlin1]

 
Syntaxcsalg 40846 Extend class notation with the class of all sigma-algebras.
class SAlg
 
Definitiondf-salg 40847* Define the class of sigma-algebras. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
SAlg = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 ( 𝑥𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → 𝑦𝑥))}
 
Syntaxcsalon 40848 Extend class notation with the class of sigma-algebras on a set.
class SalOn
 
Definitiondf-salon 40849* Define the set of sigma-algebra on a given set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
SalOn = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ 𝑠 = 𝑥})
 
Syntaxcsalgen 40850 Extend class notation with the class of sigma-algebra generator.
class SalGen
 
Definitiondf-salgen 40851* Define the sigma-algebra generated by a given set. Definition 111G (b) of [Fremlin1] p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 40877. The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex 40879. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Revised by Glauco Siliprandi, 1-Jan-2021.)
SalGen = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)})
 
Theoremissal 40852* Express the predicate "𝑆 is a sigma-algebra." (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑆𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
 
Theorempwsal 40853 The power set of a given set is a sigma-algebra (the so called discrete sigma-algebra). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
 
Theoremsalunicl 40854 SAlg sigma-algebra is closed under countable union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑆 ∈ SAlg)    &   (𝜑𝑇 ∈ 𝒫 𝑆)    &   (𝜑𝑇 ≼ ω)       (𝜑 𝑇𝑆)
 
Theoremsaluncl 40855 The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
 
Theoremprsal 40856 The pair of the empty set and the whole base is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑋𝑉 → {∅, 𝑋} ∈ SAlg)
 
Theoremsaldifcl 40857 The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
 
Theorem0sal 40858 The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑆 ∈ SAlg → ∅ ∈ 𝑆)
 
Theoremsalgenval 40859* The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
 
Theoremsaliuncl 40860* SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑆 ∈ SAlg)    &   (𝜑𝐾 ≼ ω)    &   ((𝜑𝑘𝐾) → 𝐸𝑆)       (𝜑 𝑘𝐾 𝐸𝑆)
 
Theoremsalincl 40861 The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
 
Theoremsaluni 40862 A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑆 ∈ SAlg → 𝑆𝑆)
 
Theoremsaliincl 40863* SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝑆 ∈ SAlg)    &   (𝜑𝐾 ≼ ω)    &   (𝜑𝐾 ≠ ∅)    &   ((𝜑𝑘𝐾) → 𝐸𝑆)       (𝜑 𝑘𝐾 𝐸𝑆)
 
Theoremsaldifcl2 40864 The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
 
Theoremintsaluni 40865* The union of an arbitrary intersection of sigma-algebras on the same set 𝑋, is 𝑋. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐺 ⊆ SAlg)    &   (𝜑𝐺 ≠ ∅)    &   ((𝜑𝑠𝐺) → 𝑠 = 𝑋)       (𝜑 𝐺 = 𝑋)
 
Theoremintsal 40866* The arbitrary intersection of sigma-algebra (on the same set 𝑋) is a sigma-algebra ( on the same set 𝑋, see intsaluni 40865). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐺 ⊆ SAlg)    &   (𝜑𝐺 ≠ ∅)    &   ((𝜑𝑠𝐺) → 𝑠 = 𝑋)       (𝜑 𝐺 ∈ SAlg)
 
Theoremsalgenn0 40867* The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
 
Theoremsalgencl 40868 SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝑋𝑉 → (SalGen‘𝑋) ∈ SAlg)
 
Theoremissald 40869* Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝑆𝑉)    &   (𝜑 → ∅ ∈ 𝑆)    &   𝑋 = 𝑆    &   ((𝜑𝑦𝑆) → (𝑋𝑦) ∈ 𝑆)    &   ((𝜑𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) → 𝑦𝑆)       (𝜑𝑆 ∈ SAlg)
 
Theoremsalexct 40870* An example of non trivial sigma-algebra: the collection of all subsets which either are countable or have countable complement. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝐴𝑉)    &   𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}       (𝜑𝑆 ∈ SAlg)
 
Theoremsssalgen 40871 A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝑆 = (SalGen‘𝑋)       (𝑋𝑉𝑋𝑆)
 
Theoremsalgenss 40872 The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 40880, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝑋𝑉)    &   𝐺 = (SalGen‘𝑋)    &   (𝜑𝑆 ∈ SAlg)    &   (𝜑𝑋𝑆)    &   (𝜑 𝑆 = 𝑋)       (𝜑𝐺𝑆)
 
Theoremsalgenuni 40873 The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝑋𝑉)    &   𝑆 = (SalGen‘𝑋)    &   𝑈 = 𝑋       (𝜑 𝑆 = 𝑈)
 
Theoremissalgend 40874* One side of dfsalgen2 40877. If a sigma-algebra on 𝑋 includes 𝑋 and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by 𝑋. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝑋𝑉)    &   (𝜑𝑆 ∈ SAlg)    &   (𝜑 𝑆 = 𝑋)    &   (𝜑𝑋𝑆)    &   ((𝜑 ∧ (𝑦 ∈ SAlg ∧ 𝑦 = 𝑋𝑋𝑦)) → 𝑆𝑦)       (𝜑 → (SalGen‘𝑋) = 𝑆)
 
Theoremsalexct2 40875* An example of a subset that does not belong to a non trivial sigma-algebra, see salexct 40870. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝐴 = (0[,]2)    &   𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}    &   𝐵 = (0[,]1)        ¬ 𝐵𝑆
 
Theoremunisalgen 40876 The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝑋𝑉)    &   𝑆 = (SalGen‘𝑋)    &   𝑈 = 𝑋       (𝜑𝑈𝑆)
 
Theoremdfsalgen2 40877* Alternate characterization of the sigma-algebra generated by a set. It is the smallest sigma-algebra, on the same base set, that includes the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝑋𝑉)       (𝜑 → ((SalGen‘𝑋) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))))
 
Theoremsalexct3 40878* An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝐴 = (0[,]2)    &   𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}    &   𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})       (𝑆 ∈ SAlg ∧ 𝑋𝑆 ∧ ¬ 𝑋𝑆)
 
Theoremsalgencntex 40879* This counterexample shows that df-salgen 40851 needs to require that all containing sigma-algebra have the same base set. Otherwise, the intersection could lead to a set that is not a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝐴 = (0[,]2)    &   𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}    &   𝐵 = (0[,]1)    &   𝑇 = 𝒫 𝐵    &   𝐶 = (𝑆𝑇)    &   𝑍 = {𝑠 ∈ SAlg ∣ 𝐶𝑠}        ¬ 𝑍 ∈ SAlg
 
Theoremsalgensscntex 40880* This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝐴 = (0[,]2)    &   𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}    &   𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})    &   𝐺 = (SalGen‘𝑋)       (𝑋𝑆𝑆 ∈ SAlg ∧ ¬ 𝐺𝑆)
 
Theoremissalnnd 40881* Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝑆𝑉)    &   (𝜑 → ∅ ∈ 𝑆)    &   𝑋 = 𝑆    &   ((𝜑𝑦𝑆) → (𝑋𝑦) ∈ 𝑆)    &   ((𝜑𝑒:ℕ⟶𝑆) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)       (𝜑𝑆 ∈ SAlg)
 
Theoremdmvolsal 40882 Lebesgue measurable sets form a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
dom vol ∈ SAlg
 
Theoremsaldifcld 40883 The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝑆 ∈ SAlg)    &   (𝜑𝐸𝑆)       (𝜑 → ( 𝑆𝐸) ∈ 𝑆)
 
Theoremsaluncld 40884 The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝑆 ∈ SAlg)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)       (𝜑 → (𝐸𝐹) ∈ 𝑆)
 
Theoremsalgencld 40885 SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝑋𝑉)    &   𝑆 = (SalGen‘𝑋)       (𝜑𝑆 ∈ SAlg)
 
Theorem0sald 40886 The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝑆 ∈ SAlg)       (𝜑 → ∅ ∈ 𝑆)
 
Theoremiooborel 40887 An open interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐽 = (topGen‘ran (,))    &   𝐵 = (SalGen‘𝐽)       (𝐴(,)𝐶) ∈ 𝐵
 
Theoremsalincld 40888 The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝑆 ∈ SAlg)    &   (𝜑𝐸𝑆)    &   (𝜑𝐹𝑆)       (𝜑 → (𝐸𝐹) ∈ 𝑆)
 
Theoremsalunid 40889 A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝑆 ∈ SAlg)       (𝜑 𝑆𝑆)
 
Theoremunisalgen2 40890 The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴𝑉)    &   𝑆 = (SalGen‘𝐴)       (𝜑 𝑆 = 𝐴)
 
Theorembor1sal 40891 The Borel sigma-algebra on the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐽 = (topGen‘ran (,))    &   𝐵 = (SalGen‘𝐽)       𝐵 ∈ SAlg
 
Theoremiocborel 40892 A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ)    &   𝐽 = (topGen‘ran (,))    &   𝐵 = (SalGen‘𝐽)       (𝜑 → (𝐴(,]𝐶) ∈ 𝐵)
 
Theoremsubsaliuncllem 40893* A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑦𝜑    &   (𝜑𝑆𝑉)    &   𝐺 = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})    &   𝐸 = (𝐻𝐺)    &   (𝜑𝐻 Fn ran 𝐺)    &   (𝜑 → ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑦)       (𝜑 → ∃𝑒 ∈ (𝑆𝑚 ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
 
Theoremsubsaliuncl 40894* A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝑆 ∈ SAlg)    &   (𝜑𝐷𝑉)    &   𝑇 = (𝑆t 𝐷)    &   (𝜑𝐹:ℕ⟶𝑇)       (𝜑 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
 
Theoremsubsalsal 40895 A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝑆 ∈ SAlg)    &   (𝜑𝐷𝑉)    &   𝑇 = (𝑆t 𝐷)       (𝜑𝑇 ∈ SAlg)
 
Theoremsubsaluni 40896 A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝑆 ∈ SAlg)    &   (𝜑𝐴 𝑆)       (𝜑𝐴 ∈ (𝑆t 𝐴))
 
20.32.19.2  Sum of nonnegative extended reals
 
Syntaxcsumge0 40897 Extend class notation to include the sum of nonnegative extended reals.
class Σ^
 
Definitiondf-sumge0 40898* Define the arbitrary sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) $.
Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )))
 
Theoremsge0rnre 40899* When Σ^ is applied to nonnegative real numbers the range used in its definition is a subset of the reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐹:𝑋⟶(0[,)+∞))       (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
 
Theoremfge0icoicc 40900 If 𝐹 maps to nonnegative reals, then 𝐹 maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐹:𝑋⟶(0[,)+∞))       (𝜑𝐹:𝑋⟶(0[,]+∞))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
  Copyright terms: Public domain < Previous  Next >