![]() |
Metamath
Proof Explorer Theorem List (p. 401 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | max2d 40001 | A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | uzn0bi 40002 | The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ ((ℤ≥‘𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ) | ||
Theorem | xnegrecl2 40003 | If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ ((𝐴 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | ||
Theorem | nfxneg 40004 | Bound-variable hypothesis builder for the negative of an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥-𝑒𝐴 | ||
Theorem | uzxrd 40005 | An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
Theorem | infxrpnf2 40006 | Removing plus infinity from a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝐴 ⊆ ℝ* → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < )) | ||
Theorem | supminfxr 40007* | The extended real suprema of a set of reals is the extended real negative of the extended real infima of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴}, ℝ*, < )) | ||
Theorem | infrpgernmpt 40008* | The infimum of a non empty, bounded below, indexed subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) +𝑒 𝐶)) | ||
Theorem | xnegre 40009 | An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ -𝑒𝐴 ∈ ℝ)) | ||
Theorem | xnegrecl2d 40010 | If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → -𝑒𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | uzxr 40011 | An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝐴 ∈ (ℤ≥‘𝑀) → 𝐴 ∈ ℝ*) | ||
Theorem | supminfxr2 40012* | The extended real suprema of a set of extended reals is the extended real negative of the extended real infima of that set's image under extended real negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ*) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥 ∈ 𝐴}, ℝ*, < )) | ||
Theorem | xnegred 40013 | An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ∈ ℝ ↔ -𝑒𝐴 ∈ ℝ)) | ||
Theorem | supminfxrrnmpt 40014* | The indexed supremum of a set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵), ℝ*, < )) | ||
Theorem | min1d 40015 | The minimum of two numbers is less than or equal to the first. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
Theorem | min2d 40016 | The minimum of two numbers is less than or equal to the second. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
Theorem | pnfged 40017 | Plus infinity is an upper bound for extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → 𝐴 ≤ +∞) | ||
Theorem | xrnpnfmnf 40018 | An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ +∞) ⇒ ⊢ (𝜑 → 𝐴 = -∞) | ||
Theorem | uzsscn 40019 | An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (ℤ≥‘𝑀) ⊆ ℂ | ||
Theorem | absimnre 40020 | The absolute value of the imaginary part of a non real, complex number, is strictly positive. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+) | ||
Theorem | uzsscn2 40021 | An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ 𝑍 ⊆ ℂ | ||
Theorem | xrtgcntopre 40022 | The standard topologies on the extended reals and on the complex numbers, coincide when restricted to the reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ ((ordTop‘ ≤ ) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ) | ||
Theorem | absimlere 40023 | The absolute value of the imaginary part of a complex number is a lower bound of the distance to any real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝐵 − 𝐴))) | ||
Theorem | rpssxr 40024 | The positive reals are a subset of the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ ℝ+ ⊆ ℝ* | ||
Theorem | monoordxrv 40025* | Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) | ||
Theorem | monoordxr 40026* | Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) | ||
Theorem | monoord2xrv 40027* | Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) | ||
Theorem | monoord2xr 40028* | Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) | ||
Theorem | xrpnf 40029* | An extended real is plus infinity iff it's larger than all real numbers. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ 𝐴)) | ||
Theorem | gtnelioc 40030 | A real number larger than the upper bound of a left open right closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵)) | ||
Theorem | ioossioc 40031 | An open interval is a subset of its right closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴(,)𝐵) ⊆ (𝐴(,]𝐵) | ||
Theorem | ioondisj2 40032 | A condition for two open intervals not to be disjoint. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷)) ∧ (𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅) | ||
Theorem | ioondisj1 40033 | A condition for two open intervals not to be disjoint. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷)) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ≠ ∅) | ||
Theorem | ioosscn 40034 | An open interval is a set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴(,)𝐵) ⊆ ℂ | ||
Theorem | ioogtlb 40035 | An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) | ||
Theorem | evthiccabs 40036* | Extreme Value Theorem on y closed interval, for the absolute value of y continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ (abs‘(𝐹‘𝑥)) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑤)))) | ||
Theorem | ltnelicc 40037 | A real number smaller than the lower bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 < 𝐴) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) | ||
Theorem | eliood 40038 | Membership in an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐶 < 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) | ||
Theorem | iooabslt 40039 | An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < 𝐵) | ||
Theorem | gtnelicc 40040 | A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) | ||
Theorem | iooinlbub 40041 | An open interval has empty intersection with its bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ | ||
Theorem | iocgtlb 40042 | An element of a left open right closed interval is larger than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐴 < 𝐶) | ||
Theorem | iocleub 40043 | An element of a left open right closed interval is smaller or equal to its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ≤ 𝐵) | ||
Theorem | eliccd 40044 | Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | ||
Theorem | iccssred 40045 | A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) | ||
Theorem | eliccre 40046 | A member of a closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ) | ||
Theorem | eliooshift 40047 | Element of an open interval shifted by a displacement. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)))) | ||
Theorem | eliocd 40048 | Membership in a left open, right closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴(,]𝐵)) | ||
Theorem | snunioo2 40049 | The closure of one end of an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) | ||
Theorem | icoltub 40050 | An element of a left closed right open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵) | ||
Theorem | tgiooss 40051 | The restriction of the complex topology to a subset of reals, is a restriction of the standard topology on reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) TODO (NM): Use rerest 22654 instead in fourierdlem48 40689, fourierdlem49 40690, fourierdlem62 40703 then delete this. |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝐾 ↾t 𝐴)) | ||
Theorem | eliocre 40052 | A member of a left open, right closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴(,]𝐵)) → 𝐶 ∈ ℝ) | ||
Theorem | iooltub 40053 | An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 < 𝐵) | ||
Theorem | ioontr 40054 | The interior of an interval in the standard topology on ℝ is the open interval itself. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵) | ||
Theorem | eliccxr 40055 | A member of a closed interval is a an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (𝐵[,]𝐶) → 𝐴 ∈ ℝ*) | ||
Theorem | snunioo1 40056 | The closure of one end of an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) | ||
Theorem | lbioc 40057 | An left open right closed interval doesn't contain its left endpoint. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ¬ 𝐴 ∈ (𝐴(,]𝐵) | ||
Theorem | ioomidp 40058 | The midpoint is an element of the open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) | ||
Theorem | iccdifioo 40059 | If the open inverval is removed from the closed interval, only the bounds are left. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵}) | ||
Theorem | iccdifprioo 40060 | An open interval is the closed interval without the bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)) | ||
Theorem | ioossioobi 40061 | Biconditional form of ioossioo 12303. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 < 𝐷) ⇒ ⊢ (𝜑 → ((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵))) | ||
Theorem | iccshift 40062* | A closed interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) | ||
Theorem | iccsuble 40063 | An upper bound to the distance of two elements in a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) ⇒ ⊢ (𝜑 → (𝐶 − 𝐷) ≤ (𝐵 − 𝐴)) | ||
Theorem | iocopn 40064 | A left open right closed interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝐽 = (𝐾 ↾t (𝐴(,]𝐵)) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐶(,]𝐵) ∈ 𝐽) | ||
Theorem | eliccelioc 40065 | Membership in a closed interval and in a left open right closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶 ≠ 𝐴))) | ||
Theorem | iooshift 40066* | An open interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) | ||
Theorem | iccintsng 40067 | Intersection of two adiacent closed intervals is a singleton. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵}) | ||
Theorem | icoiccdif 40068 | Left closed, right open interval gotten by a closed iterval taking away the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = ((𝐴[,]𝐵) ∖ {𝐵})) | ||
Theorem | icoopn 40069 | A left closed right open interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝐽 = (𝐾 ↾t (𝐴[,)𝐵)) & ⊢ (𝜑 → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴[,)𝐶) ∈ 𝐽) | ||
Theorem | icoub 40070 | A left-closed, right-open interval does not contain its upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ∈ ℝ* → ¬ 𝐵 ∈ (𝐴[,)𝐵)) | ||
Theorem | eliccxrd 40071 | Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | ||
Theorem | pnfel0pnf 40072 | +∞ is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ +∞ ∈ (0[,]+∞) | ||
Theorem | ge0nemnf2 40073 | A nonnegative extended real is not -∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) | ||
Theorem | eliccnelico 40074 | An element of a closed interval that is not a member of the left closed right open interval, must be the upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵)) ⇒ ⊢ (𝜑 → 𝐶 = 𝐵) | ||
Theorem | eliccelicod 40075 | A member of a closed interval that is not the upper bound, is a member of the left-closed, right-open interval. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐶 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) | ||
Theorem | ge0xrre 40076 | A nonnegative extended real that is not +∞ is a real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ) | ||
Theorem | ge0lere 40077 | A nonnegative extended Real number smaller than or equal to a Real number, is a Real number. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ ℝ) | ||
Theorem | elicores 40078* | Membership in a left-closed, right-open interval with real bounds. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦)) | ||
Theorem | inficc 40079 | The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝑆 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑆 ≠ ∅) ⇒ ⊢ (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵)) | ||
Theorem | qinioo 40080 | The rational numbers are dense in ℝ. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵 ≤ 𝐴)) | ||
Theorem | lenelioc 40081 | A real number smaller than or equal to the lower bound of a left open right closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ≤ 𝐴) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵)) | ||
Theorem | ioonct 40082 | C non empty open interval is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝐶 = (𝐴(,)𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ≼ ω) | ||
Theorem | xrgtnelicc 40083 | A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) | ||
Theorem | iccdificc 40084 | The difference of two closed intervals with the same lower bound. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶)) | ||
Theorem | iocnct 40085 | A non empty left-open, right-closed interval is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝐶 = (𝐴(,]𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ≼ ω) | ||
Theorem | iccnct 40086 | A closed interval, with more than one element is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝐶 = (𝐴[,]𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ≼ ω) | ||
Theorem | iooiinicc 40087* | A closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = (𝐴[,]𝐵)) | ||
Theorem | iccgelbd 40088 | An element of a closed interval is more than or equal to its lower bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) | ||
Theorem | iooltubd 40089 | An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) ⇒ ⊢ (𝜑 → 𝐶 < 𝐵) | ||
Theorem | icoltubd 40090 | An element of a left closed right open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) ⇒ ⊢ (𝜑 → 𝐶 < 𝐵) | ||
Theorem | qelioo 40091* | The rational numbers are dense in ℝ*: any two extended real numbers have a rational between them. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℚ 𝑥 ∈ (𝐴(,)𝐵)) | ||
Theorem | tgqioo2 40092* | Every open set of reals is the (countable) union of open interval with rational bounds. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) ⇒ ⊢ (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = ∪ 𝑞)) | ||
Theorem | iccleubd 40093 | An element of a closed interval is less than or equal to its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) ⇒ ⊢ (𝜑 → 𝐶 ≤ 𝐵) | ||
Theorem | elioored 40094 | A member of an open interval of reals is a real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ (𝐵(,)𝐶)) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | ioogtlbd 40095 | An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
Theorem | ioofun 40096 | (,) is a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Fun (,) | ||
Theorem | icomnfinre 40097 | A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴)) | ||
Theorem | sqrlearg 40098 | The square compared with its argument. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴↑2) ≤ 𝐴 ↔ 𝐴 ∈ (0[,]1))) | ||
Theorem | ressiocsup 40099 | If the supremum belongs to a set of reals, the set is a subset of the unbounded below, right-closed interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑆 = sup(𝐴, ℝ*, < ) & ⊢ (𝜑 → 𝑆 ∈ 𝐴) & ⊢ 𝐼 = (-∞(,]𝑆) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐼) | ||
Theorem | ressioosup 40100 | If the supremum does not belong to a set of reals, the set is a subset of the unbounded below, right-open interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑆 = sup(𝐴, ℝ*, < ) & ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) & ⊢ 𝐼 = (-∞(,)𝑆) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |