![]() |
Metamath
Proof Explorer Theorem List (p. 40 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | invdif 3901 | Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
Theorem | indif 3902 | Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
Theorem | indif2 3903 | Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | ||
Theorem | indif1 3904 | Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | ||
Theorem | indifcom 3905 | Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = (𝐵 ∩ (𝐴 ∖ 𝐶)) | ||
Theorem | indi 3906 | Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) | ||
Theorem | undi 3907 | Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ∪ (𝐵 ∩ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) | ||
Theorem | indir 3908 | Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) | ||
Theorem | undir 3909 | Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) | ||
Theorem | unineq 3910 | Infer equality from equalities of union and intersection. Exercise 20 of [Enderton] p. 32 and its converse. (Contributed by NM, 10-Aug-2004.) |
⊢ (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) ↔ 𝐴 = 𝐵) | ||
Theorem | uneqin 3911 | Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∪ 𝐵) = (𝐴 ∩ 𝐵) ↔ 𝐴 = 𝐵) | ||
Theorem | difundi 3912 | Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) | ||
Theorem | difundir 3913 | Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) | ||
Theorem | difindi 3914 | Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) | ||
Theorem | difindir 3915 | Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∩ (𝐵 ∖ 𝐶)) | ||
Theorem | indifdir 3916 | Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) |
⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) | ||
Theorem | difdif2 3917 | Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017.) |
⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) | ||
Theorem | undm 3918 | De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
⊢ (V ∖ (𝐴 ∪ 𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) | ||
Theorem | indm 3919 | De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
⊢ (V ∖ (𝐴 ∩ 𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) | ||
Theorem | difun1 3920 | A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.) |
⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) | ||
Theorem | undif3 3921 | An equality involving class union and class difference. The first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 17-Apr-2012.) (Proof shortened by JJ, 13-Jul-2021.) |
⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) | ||
Theorem | undif3OLD 3922 | Obsolete proof of undif3 3921 as of 13-Jul-2021. (Contributed by Alan Sare, 17-Apr-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) | ||
Theorem | difin2 3923 | Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) | ||
Theorem | dif32 3924 | Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.) |
⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) | ||
Theorem | difabs 3925 | Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.) |
⊢ ((𝐴 ∖ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | ||
Theorem | dfsymdif3 3926 | Alternate definition of the symmetric difference, given in Example 4.1 of [Stoll] p. 262 (the original definition corresponds to [Stoll] p. 13). (Contributed by NM, 17-Aug-2004.) (Revised by BJ, 30-Apr-2020.) |
⊢ (𝐴 △ 𝐵) = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) | ||
Theorem | unab 3927 | Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} | ||
Theorem | inab 3928 | Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} | ||
Theorem | difab 3929 | Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ({𝑥 ∣ 𝜑} ∖ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} | ||
Theorem | notab 3930 | A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.) |
⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) | ||
Theorem | unrab 3931 | Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} | ||
Theorem | inrab 3932 | Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | ||
Theorem | inrab2 3933* | Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} | ||
Theorem | difrab 3934 | Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} | ||
Theorem | dfrab3 3935* | Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | ||
Theorem | dfrab2 3936* | Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) | ||
Theorem | notrab 3937* | Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} | ||
Theorem | dfrab3ss 3938* | Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.) |
⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) | ||
Theorem | rabun2 3939 | Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.) |
⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
Theorem | reuss2 3940* | Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005.) |
⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
Theorem | reuss 3941* | Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
Theorem | reuun1 3942* | Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.) |
⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
Theorem | reuun2 3943* | Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.) |
⊢ (¬ ∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | reupick 3944* | Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.) |
⊢ (((𝐴 ⊆ 𝐵 ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) ∧ 𝜑) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
Theorem | reupick3 3945* | Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.) |
⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝜓)) | ||
Theorem | reupick2 3946* | Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
⊢ (((∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 𝜓 ∧ ∃!𝑥 ∈ 𝐴 𝜑) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) | ||
Theorem | euelss 3947* | Transfer uniqueness of an element to a smaller subclass. (Contributed by AV, 14-Apr-2020.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴 ∧ ∃!𝑥 𝑥 ∈ 𝐵) → ∃!𝑥 𝑥 ∈ 𝐴) | ||
Syntax | c0 3948 | Extend class notation to include the empty set. |
class ∅ | ||
Definition | df-nul 3949 | Define the empty set. Special case of Exercise 4.10(o) of [Mendelson] p. 231. For a more traditional definition, but requiring a dummy variable, see dfnul2 3950. (Contributed by NM, 17-Jun-1993.) |
⊢ ∅ = (V ∖ V) | ||
Theorem | dfnul2 3950 | Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) |
⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | ||
Theorem | dfnul3 3951 | Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) |
⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | ||
Theorem | noel 3952 | The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
⊢ ¬ 𝐴 ∈ ∅ | ||
Theorem | n0i 3953 | If a set has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) | ||
Theorem | ne0i 3954 | If a set has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) | ||
Theorem | n0ii 3955 | If a set has elements, then it is not empty. Inference associated with n0i 3953. (Contributed by BJ, 15-Jul-2021.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ¬ 𝐵 = ∅ | ||
Theorem | ne0ii 3956 | If a set has elements, then it is not empty. Inference associated with ne0i 3954. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ 𝐵 ≠ ∅ | ||
Theorem | vn0 3957 | The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.) |
⊢ V ≠ ∅ | ||
Theorem | eq0f 3958 | The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by BJ, 15-Jul-2021.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | ||
Theorem | neq0f 3959 | A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of neq0 3963 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by BJ, 15-Jul-2021.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | n0f 3960 | A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 3964 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by NM, 17-Oct-2003.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | n0fOLD 3961 | Obsolete proof of n0f 3960 as of 15-Jul-2021. (Contributed by NM, 17-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | eq0 3962* | The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) |
⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | ||
Theorem | neq0 3963* | A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) |
⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | n0 3964* | A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 29-Sep-2006.) |
⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | nel0 3965* | From the general negation of membership in 𝐴, infer that 𝐴 is the empty set. (Contributed by BJ, 6-Oct-2018.) |
⊢ ¬ 𝑥 ∈ 𝐴 ⇒ ⊢ 𝐴 = ∅ | ||
Theorem | reximdva0 3966* | Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rspn0 3967* | Specialization for restricted generalization with a nonempty set. (Contributed by Alexander van der Vekens, 6-Sep-2018.) |
⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) | ||
Theorem | n0rex 3968* | There is an element in a nonempty class which is an element of the class. (Contributed by AV, 17-Dec-2020.) |
⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐴) | ||
Theorem | ssn0rex 3969* | There is an element in a class with a nonempty subclass which is an element of the subclass. (Contributed by AV, 17-Dec-2020.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐵 𝑥 ∈ 𝐴) | ||
Theorem | n0moeu 3970* | A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010.) |
⊢ (𝐴 ≠ ∅ → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 𝑥 ∈ 𝐴)) | ||
Theorem | rex0 3971 | Vacuous existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 | ||
Theorem | 0el 3972* | Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.) |
⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) | ||
Theorem | n0el 3973* | Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010.) |
⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑢 𝑢 ∈ 𝑥) | ||
Theorem | eqeuel 3974* | A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022.) |
⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥 ∈ 𝐴) | ||
Theorem | ssdif0 3975 | Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | ||
Theorem | difn0 3976 | If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.) |
⊢ ((𝐴 ∖ 𝐵) ≠ ∅ → 𝐴 ≠ 𝐵) | ||
Theorem | pssdifn0 3977 | A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) | ||
Theorem | pssdif 3978 | A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) | ||
Theorem | difin0ss 3979 | Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
⊢ (((𝐴 ∖ 𝐵) ∩ 𝐶) = ∅ → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) | ||
Theorem | inssdif0 3980 | Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅) | ||
Theorem | difid 3981 | The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) |
⊢ (𝐴 ∖ 𝐴) = ∅ | ||
Theorem | difidALT 3982 | Alternate proof of difid 3981. (Contributed by David Abernethy, 17-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∖ 𝐴) = ∅ | ||
Theorem | dif0 3983 | The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∖ ∅) = 𝐴 | ||
Theorem | ab0 3984 | The class of sets verifying a property is the empty class if and only if that property is a contradiction. See also abn0 3987 (from which it could be proved using as many essential proof steps but one fewer syntactic step, at the cost of depending on df-ne 2824). (Contributed by BJ, 19-Mar-2021.) |
⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | ||
Theorem | dfnf5 3985 | Characterization of non-freeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021.) |
⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = ∅ ∨ {𝑥 ∣ 𝜑} = V)) | ||
Theorem | ab0orv 3986* | The class builder of a wff not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.) |
⊢ ({𝑥 ∣ 𝜑} = ∅ ∨ {𝑥 ∣ 𝜑} = V) | ||
Theorem | abn0 3987 | Nonempty class abstraction. See also ab0 3984. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | ||
Theorem | rab0 3988 | Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ | ||
Theorem | rab0OLD 3989 | Obsolete proof of rab0 3988 as of 14-Jul-2021. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ | ||
Theorem | rabeq0 3990 | Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | ||
Theorem | rabn0 3991 | Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rabn0OLD 3992 | Obsolete proof of rabn0 3991 as of 16-Jul-2021. (Contributed by NM, 29-Aug-1999.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rabeq0OLD 3993 | Obsolete proof of rabeq0 3990 as of 16-Jul-2021. (Contributed by Jeff Madsen, 7-Jun-2010.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | ||
Theorem | rabxm 3994* | Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) |
⊢ 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) | ||
Theorem | rabnc 3995* | Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ∅ | ||
Theorem | elneldisj 3996* | The set of elements 𝑠 determining classes 𝐶 (which may depend on 𝑠) containing a special element and the set of elements 𝑠 determining classes 𝐶 not containing the special element are disjoint. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Revised by AV, 17-Dec-2021.) |
⊢ 𝐸 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} & ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝐶} ⇒ ⊢ (𝐸 ∩ 𝑁) = ∅ | ||
Theorem | elnelun 3997* | The union of the set of elements 𝑠 determining classes 𝐶 (which may depend on 𝑠) containing a special element and the set of elements 𝑠 determining classes 𝐶 not containing the special element yields the original set. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Revised by AV, 17-Dec-2021.) |
⊢ 𝐸 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} & ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝐶} ⇒ ⊢ (𝐸 ∪ 𝑁) = 𝐴 | ||
Theorem | elneldisjOLD 3998* | Obsolete version of elneldisj 3996 as of 17-Dec-2021. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐸 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝑠} & ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝑠} ⇒ ⊢ (𝐸 ∩ 𝑁) = ∅ | ||
Theorem | elnelunOLD 3999* | Obsolete version of elnelun 3997 as of 17-Dec-2021. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐸 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝑠} & ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝑠} ⇒ ⊢ (𝐸 ∪ 𝑁) = 𝐴 | ||
Theorem | un0 4000 | The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 15-Jul-1993.) |
⊢ (𝐴 ∪ ∅) = 𝐴 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |