![]() |
Metamath
Proof Explorer Theorem List (p. 396 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnfex 39501 | The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) | ||
Theorem | fnchoice 39502* | For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ (𝐴 ∈ Fin → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | ||
Theorem | refsumcn 39503* | A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 22720 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | rfcnpre2 39504 | If 𝐹 is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real 𝐵, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐽) | ||
Theorem | cncmpmax 39505* | When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑇 ≠ ∅) ⇒ ⊢ (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ))) | ||
Theorem | rfcnpre3 39506* | If F is a continuous function with respect to the standard topology, then the preimage A of the values greater or equal than a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝐹 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐴 = {𝑡 ∈ 𝑇 ∣ 𝐵 ≤ (𝐹‘𝑡)} & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) | ||
Theorem | rfcnpre4 39507* | If F is a continuous function with respect to the standard topology, then the preimage A of the values smaller or equal than a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝐹 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐴 = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ 𝐵} & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) | ||
Theorem | sumpair 39508* | Sum of two distinct complex values. The class expression for 𝐴 and 𝐵 normally contain free variable 𝑘 to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ (𝜑 → Ⅎ𝑘𝐷) & ⊢ (𝜑 → Ⅎ𝑘𝐸) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) | ||
Theorem | rfcnnnub 39509* | Given a real continuous function 𝐹 defined on a compact topological space, there is always a positive integer that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝑇 ≠ ∅) & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) < 𝑛) | ||
Theorem | refsum2cnlem1 39510* | This is the core Lemma for refsum2cn 39511: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐺 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺)) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | refsum2cn 39511* | The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐺 & ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | elunnel2 39512 | A member of a union that is not a member of the second class, is a member of the first class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐵) | ||
Theorem | adantlllr 39513 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | 3adantlr3 39514 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜂)) ∧ 𝜃) → 𝜏) | ||
Theorem | nnxrd 39515 | A natural number is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
Theorem | 3adantll2 39516 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | 3adantll3 39517 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜂) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | ssnel 39518 | If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ 𝐴) | ||
Theorem | jcn 39519 | Inference joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → ¬ (𝜓 → 𝜒)) | ||
Theorem | elabrexg 39520* | Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | ||
Theorem | ifeq123d 39521 | Equality deduction for conditional operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) AV: This theorem already exists as ifbieq12d 4146. TODO (NM): Please replace the usage of this theorem by ifbieq12d 4146 then delete this theorem. (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐷)) | ||
Theorem | sncldre 39522 | A singleton is closed w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℝ → {𝐴} ∈ (Clsd‘(topGen‘ran (,)))) | ||
Theorem | n0p 39523 | A polynomial with a nonzero coefficient is not the zero polynomial. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ ((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → 𝑃 ≠ 0𝑝) | ||
Theorem | pm2.65ni 39524 | Inference rule for proof by contradiction. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (¬ 𝜑 → 𝜓) & ⊢ (¬ 𝜑 → ¬ 𝜓) ⇒ ⊢ 𝜑 | ||
Theorem | pwssfi 39525 | Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) | ||
Theorem | iuneq2df 39526 | Equality deduction for indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | ||
Theorem | nnfoctb 39527* | There exists a mapping from ℕ onto any (nonempty) countable set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto→𝐴) | ||
Theorem | ssinss1d 39528 | Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
Theorem | 0un 39529 | The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (∅ ∪ 𝐴) = 𝐴 | ||
Theorem | elpwinss 39530 | An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) | ||
Theorem | unidmex 39531 | If 𝐹 is a set, then ∪ dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝑋 = ∪ dom 𝐹 ⇒ ⊢ (𝜑 → 𝑋 ∈ V) | ||
Theorem | ndisj2 39532* | A non disjointness condition. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (¬ Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) | ||
Theorem | zenom 39533 | The set of integer numbers is equinumerous to omega (the set of finite ordinal numbers). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ℤ ≈ ω | ||
Theorem | rexsngf 39534* | Restricted existential quantification over a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) | ||
Theorem | uzwo4 39535* | Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑗𝜓 & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ ∃𝑗 ∈ 𝑆 𝜑) → ∃𝑗 ∈ 𝑆 (𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓))) | ||
Theorem | unisn0 39536 | The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ∪ {∅} = ∅ | ||
Theorem | ssin0 39537 | If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) | ||
Theorem | inabs3 39538 | Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ 𝐶)) | ||
Theorem | pwpwuni 39539 | Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) | ||
Theorem | disjiun2 39540* | In a disjoint collection, an indexed union is disjoint from an additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) & ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐸) ⇒ ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ 𝐸) = ∅) | ||
Theorem | 0pwfi 39541 | The empty set is in any power set, and it's finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) | ||
Theorem | ssinss2d 39542 | Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
Theorem | zct 39543 | The set of integer numbers is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ℤ ≼ ω | ||
Theorem | iunxsngf2 39544* | A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) | ||
Theorem | pwfin0 39545 | A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ | ||
Theorem | uzct 39546 | An upper integer set is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑁) ⇒ ⊢ 𝑍 ≼ ω | ||
Theorem | iunxsnf 39547* | A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝐶 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 | ||
Theorem | fiiuncl 39548* | If a set is closed under the union of two sets, then it is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ 𝐷) → (𝑦 ∪ 𝑧) ∈ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷) | ||
Theorem | iunp1 39549* | The addition of the next set to a union indexed by a finite set of sequential integers. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝐵 & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∪ 𝑘 ∈ (𝑀...𝑁)𝐴 ∪ 𝐵)) | ||
Theorem | fiunicl 39550* | If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∪ 𝑦) ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝐴) | ||
Theorem | ixpeq2d 39551 | Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | ||
Theorem | disjxp1 39552* | The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 (𝐵 × 𝐶)) | ||
Theorem | disjsnxp 39553* | The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) | ||
Theorem | eliind 39554* | Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐵) & ⊢ (𝑥 = 𝐾 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐷) | ||
Theorem | rspcef 39555 | Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) | ||
Theorem | inn0f 39556 | A non-empty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | ixpssmapc 39557* | An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑𝑚 𝐴)) | ||
Theorem | inn0 39558* | A non-empty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | elintd 39559* | Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) | ||
Theorem | eqneltri 39560 | If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ 𝐴 = 𝐵 & ⊢ ¬ 𝐵 ∈ 𝐶 ⇒ ⊢ ¬ 𝐴 ∈ 𝐶 | ||
Theorem | ssdf 39561* | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | brneqtrd 39562 | Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → ¬ 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) | ||
Theorem | ssnct 39563 | A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → ¬ 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 ≼ ω) | ||
Theorem | ssuniint 39564* | Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵) | ||
Theorem | elintdv 39565* | Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) | ||
Theorem | ssd 39566* | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | ralimralim 39567 | Introducing any antecedent in a restricted universal quantification. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) | ||
Theorem | snelmap 39568 | Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑𝑚 𝐴)) ⇒ ⊢ (𝜑 → 𝑥 ∈ 𝐵) | ||
Theorem | dfcleqf 39569 | Equality connective between classes. Same as dfcleq 2645, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
Theorem | xrnmnfpnf 39570 | An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ -∞) ⇒ ⊢ (𝜑 → 𝐴 = +∞) | ||
Theorem | nelrnmpt 39571* | Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝐹) | ||
Theorem | snn0d 39572 | The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → {𝐴} ≠ ∅) | ||
Theorem | iuneq1i 39573* | Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 | ||
Theorem | nssrex 39574* | Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | ||
Theorem | nelpr2 39575 | If a class is not an element of an unordered pair, it is not the second listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | nelpr1 39576 | If a class is not an element of an unordered pair, it is not the first listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | iunssf 39577 | Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
Theorem | ssinc 39578* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑁)) | ||
Theorem | ssdec 39579* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ⊆ (𝐹‘𝑀)) | ||
Theorem | elixpconstg 39580* | Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵)) | ||
Theorem | iineq1d 39581* | Equality theorem for indexed intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | metpsmet 39582 | A metric is a pseudometric. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | ||
Theorem | ixpssixp 39583 | Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | ||
Theorem | ballss3 39584* | A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴) | ||
Theorem | iunssd 39585* | Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
Theorem | iunincfi 39586* | Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ (𝑀...𝑁)(𝐹‘𝑛) = (𝐹‘𝑁)) | ||
Theorem | nsstr 39587 | If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ ((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐶) | ||
Theorem | rabbida 39588 | Equivalent wff's yield equal restricted class abstractions (deduction rule). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | rexanuz3 39589* | Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) & ⊢ (𝑘 = 𝑗 → (𝜒 ↔ 𝜃)) & ⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏)) | ||
Theorem | rabeqd 39590* | Equality theorem for restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | cbvmpt22 39591* | Rule to change the second bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑤𝐴 & ⊢ Ⅎ𝑤𝐶 & ⊢ Ⅎ𝑦𝐸 & ⊢ (𝑦 = 𝑤 → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐸) | ||
Theorem | cbvmpt21 39592* | Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝐸 & ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) | ||
Theorem | eliuniin 39593* | Indexed union of indexed intersections. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐴 = ∪ 𝑥 ∈ 𝐵 ∩ 𝑦 ∈ 𝐶 𝐷 ⇒ ⊢ (𝑍 ∈ 𝑉 → (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷)) | ||
Theorem | ssabf 39594 | Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | uniexd 39595 | Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ V) | ||
Theorem | pwexd 39596 | Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ V) | ||
Theorem | pssnssi 39597 | A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐴 ⊊ 𝐵 ⇒ ⊢ ¬ 𝐵 ⊆ 𝐴 | ||
Theorem | rabidim2 39598 | Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) | ||
Theorem | xpexd 39599 | The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) | ||
Theorem | eluni2f 39600* | Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |