Home Metamath Proof ExplorerTheorem List (p. 392 of 429) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27903) Hilbert Space Explorer (27904-29428) Users' Mathboxes (29429-42879)

Theorem List for Metamath Proof Explorer - 39101-39200   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremnot12an2impnot1 39101 If a double conjunction is false and the second conjunct is true, then the first conjunct is false. http://us.metamath.org/other/completeusersproof/not12an2impnot1vd.html is the Virtual Deduction proof verified by automatically transforming it into the Metamath proof of not12an2impnot1 39101 using completeusersproof, which is verified by the Metamath program. http://us.metamath.org/other/completeusersproof/not12an2impnot1ro.html is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.)
((¬ (𝜑𝜓) ∧ 𝜓) → ¬ 𝜑)

20.31.4  What is Virtual Deduction?

Syntaxwvd1 39102 A Virtual Deduction proof in a Hilbert-style deductive system is the analogue of a sequent calculus proof. A theorem is proven in a Gentzen system in order to prove more directly, which may be more intuitive and easier for some people. The analogue of this proof in Metamath's Hilbert-style system is verified by the Metamath program.

Natural Deduction is a well-known proof method orignally proposed by Gentzen in 1935 and comprehensively summarized by Prawitz in his 1965 monograph "Natural deduction: a proof-theoretical study". Gentzen wished to construct "a formalism that comes as close as possible to natural reasoning". Natural deduction is a response to dissatisfaction with axiomatic proofs such as Hilbert-style axiomatic proofs, which the proofs of Metamath are. In 1926, in Poland, Lukasiewicz advocated a more natural treatment of logic. Jaskowski made the earliest attempts at defining a more natural deduction. Natural deduction in its modern form was independently proposed by Gentzen.

Sequent calculus, the chief alternative to Natural Deduction, was created by Gentzen. The following is an excerpt from Stephen Cole Kleene's seminal 1952 book "Introduction to Metamathematics", which contains the first formulation of sequent calculus in the modern style. Kleene states on page 440:

. . . the proof (of Gentzen's Hauptsatz) breaks down into a list of cases, each of which is simple to handle. . . . Gentzen's normal form for proofs in the predicate calculus requires a different classification of the deductive steps than is given by the postulates of the formal system of predicate calculus of Chapter IV (Section 19). The implication symbol (the Metamath symbol for implication has been substituted here for the symbol used by Kleene) has to be separated in its role of mediating inferences from its role as a component symbol of the formula being proved. In the former role it will be replaced by a new formal symbol (read "gives" or "entails"), to which properties will be assigned similar to those of the informal symbol in our former derived rules.

Gentzen's classification of the deductive operations is made explicit by setting up a new formal system of the predicate calculus. The formal system of propositional and predicate calculus studied previously (Chapters IV ff.) we call now a "Hilbert-type system", and denote by H. Precisely, H denotes any one or a particular one of several systems, according to whether we are considering propositional calculus or predicate calculus, in the classical or the intuitionistic version (Section 23), and according to the sense in which we are using "term" and "formula" (Sections 117,25,31,37,72-76). The same respective choices will apply to the "Gentzen-type system G1" which we introduce now and the G2, G3 and G3a later.

The transformation or deductive rules of G1 will apply to objects which are not formulas of the system H, but are built from them by an additional formation rule, so we use a new term "sequent" for these objects. (Gentzen says "Sequenz", which we translate as "sequent", because we have already used "sequence" for any succession of objects, where the German is "Folge".) A sequent is a formal expression of the form 𝜑, . . . , 𝜓 𝜒, . . . , 𝜃 where 𝜑 , . . . , 𝜓 and 𝜒, . . . , 𝜃 are seqences of a finite number of 0 or more formulas (substituting Metamath notation for Kleene's notation). The part 𝜑, . . . , 𝜓 is the antecedent, and 𝜒, . . . , 𝜃 the succedent of the sequent 𝜑, . . . , 𝜓 𝜒, . . . , 𝜃.

When the antecedent and the succedent each have a finite number of 1 or more formulas, the sequent 𝜑, . . . , 𝜓 𝜒, . . . 𝜃 has the same interpretation for G1 as the formula ((𝜑. . . 𝜓) → (𝜒. . . 𝜃)) for H. The interpretation extends to the case of an antecedent of 0 formulas by regarding (𝜑. . . 𝜓) for 0 formulas (the "empty conjunction") as true and (𝜒. . . 𝜃) for 0 formulas (the "empty disjunction") as false.

. . . As in Chapter V, we use Greek capitals . . . to stand for finite sequences of zero or more formulas, but now also as antecedent (succedent), or parts of antecedent (succedent), with separating formal commas included. . . . (End of Kleene excerpt)

In chapter V entitled "Formal Deduction" Kleene states, on page 86:

Section 20. Formal deduction. Formal proofs of even quite elementary theorems tend to be long. As a price for having analyzed logical deduction into simple steps, more of those steps have to be used.

The purpose of formalizing a theory is to get an explicit definition of what constitutes proof in the theory. Having achieved this, there is no need always to appeal directly to the definition. The labor required to establish the formal provability of formulas can be greatly lessened by using metamathematical theorems concerning the existence of formal proofs. If the demonstrations of those theorems do have the finitary character which metamathematics is supposed to have, the demonstrations will indicate, at least implicitly, methods for obtaining the formal proofs. The use of the metamathematical theorems then amounts to abbreviation, often of very great extent, in the presentation of formal proofs.

The simpler of such metamathematical theorems we shall call derived rules, since they express principles which can be said to be derived from the postulated rules by showing that the use of them as additional methods of inference does not increase the class of provable formulas. We shall seek by means of derived rules to bring the methods for establishing the facts of formal provability as close as possible to the informal methods of the theory which is being formalized.

In setting up the formal system, proof was given the simplest possible structure, consisting of a single sequence of formulas. Some of our derived rules, called "direct rules", will serve to abbreviate for us whole segments of such a sequence; we can then, so to speak, use these segments as prefabricated units in building proofs.

But also, in mathematical practice, proofs are common which have a more complicated structure, employing "subsidiary deduction", i.e. deduction under assumptions for the sake of the argument, which assumptions are subsequently discharged. For example, subsidiary deduction is used in a proof by reductio ad absurdum, and less obtrusively when we place the hypothesis of a theorem on a par with proved propositions to deduce the conclusion. Other derived rules, called "subsidiary deduction rules", will give us this kind of procedure.

We now introduce, by a metamathematical definition, the notion of "formal deducibility under assumptions". Given a list 𝜑, . . . 𝜓 of 0 or more (occurrences of) formulas, a finite sequence of one or more (occurrences of) formulas is called a (formal) deduction from the assumption formulas 𝜑, . . . 𝜓, if each formula of the sequence is either one of the formulas 𝜑, . . . 𝜓, or an axiom, or an immediate consequence of preceding formulas of a sequence. A deduction is said to be deducible from the assumption formulas (in symbols, 𝜑,. . . . ,. 𝜓𝜒), and is called the conclusion (or endformula) of the deduction. (The symbol may be read "yields".) (End of Kleene excerpt)

Gentzen's normal form is a certain direct fashion for proofs and deductions. His sequent calculus, formulated in the modern style by Kleene, is the classical system G1. In this system, the new formal symbol has properties similar to the informal symbol of Kleene's above language of formal deducibility under assumptions.

Kleene states on page 440:

. . . This leads us to inquire whether there may not be a theorem about the predicate calculus asserting that, if a formula is provable (or deducible from other formulas), it is provable (or deducible) in a certain direct fashion; in other words, a theorem giving a normal form for proofs and deductions, the proofs and deduction in normal form being in some sense direct. (End of Kleene excerpt)

There is such a theorem, which was proven by Kleene.

Formal proofs in H of even quite elementary theorems tend to be long. As a price for having analyzed logical deduction into simple steps, more of those steps have to be used. The proofs of Metamath are fully detailed formal proofs. We wish to have a means of writing rigorously verifiable mathematical proofs in a more direct fashion. Natural Deduction is a system for proving theorems and deductions in a more direct fashion. However, Natural Deduction is not compatible for use with Metamath, which uses a Hilbert-type system. Instead, Kleene's classical system G1 may be used for proving Metamath deductions and theorems in a more direct fashion.

The system of Metamath is an H system, not a Gentzen system. Therefore, proofs in Kleene's classical system G1 ("G1") cannot be included in Metamath's system H, which we shall henceforth call "system H" or "H". However, we may translate proofs in G1 into proofs in H.

By Kleene's THEOREM 47 (page 446)

 if ⊢ → 𝜑 in G1 then ⊢ 𝜑 in H

By Kleene's COROLLARY of THEOREM 47 (page 448)

 if ⊢ 𝜑 → 𝜓 in G1 then ⊢ (   𝜑   ▶   𝜓   ) in H if ⊢ 𝜑   ,   𝜓 → 𝜒 in G1 then ⊢ (   (   𝜑   ,   𝜓   )   ▶   𝜒   ) in H if ⊢ 𝜑   ,   𝜓   ,   𝜒 → 𝜃 in G1 then ⊢ (   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   ) in H

▶    denotes the same connective denoted by . " , " , in the context of Virtual Deduction, denotes the same connective denoted by . This Virtual Deduction notation is specified by the following set.mm definitions:

 df-vd1 39103 ⊢ ((   𝜑   ▶   𝜓   ) ↔ (𝜑 → 𝜓)) dfvd2an 39115 ⊢ ((   (   𝜑   ,   𝜓   )   ▶   𝜒   ) ↔ ((𝜑 ∧ 𝜓) → 𝜒)) dfvd3an 39127 ⊢ ((   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   ) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃))

▶    replaces in the analogue in H of a sequent in G1 having a nonempty antecedent. If    ▶    occurs as the outermost connective denoted by    ▶    or and occurs exactly once, we call the analogue in H of a sequent in G1 a "virtual deduction" because the corresponding of the sequent is assigned properties similar to .

While sequent calculus proofs (proofs in G1) may have as steps sequents with 0, 1, or more formulas in the succedent, we shall only prove in G1 using sequents with exactly 1 formula in the succedent.

The User proves in G1 in order to obtain the benefits of more direct proving using sequent calculus, then translates the proof in G1 into a proof in H. The reference theorems and deductions to be used for proving in G1 are translations of theorems and deductions in set.mm.

Each theorem 𝜑 in set.mm corresponds to the theorem 𝜑 in G1. Deductions in G1 corresponding to deductions in H are similarly determined. Theorems in H with one or more occurrences of either    ▶    or may also be translated into theorems in G1 for by replacing the outermost occurrence of    ▶    or of the theorem in H with . Deductions in H may be translated into deductions in G1 in a similar manner. The only theorems and deductions in H useful for proving in G1 for the purpose of obtaining proofs in H are those in which, for each hypothesis or assertion, there are 0 or 1 occurrences of    ▶    and it is the outermost occurrence of    ▶    or . Kleene's THEOREM 46 and its COROLLARY 2 are used for translating from H to G1. By Kleene's THEOREM 46 (page 445)

 if ⊢ 𝜑 in H then ⊢ → 𝜑 in G1

By Kleene's COROLLARY 2 of THEOREM 46 (page 446)

 if ⊢ (   𝜑   ▶   𝜓   ) in H then ⊢ 𝜑 → 𝜓 in G1 if ⊢ (   (   𝜑   ,   𝜓   )   ▶   𝜒   ) in H then ⊢ 𝜑   ,   𝜓 → 𝜒 in G1 if ⊢ (   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   ) in H then ⊢ 𝜑   ,   𝜓   ,   𝜒 → 𝜃 in G1

To prove in H, the User simply proves in G1 and translates each G1-proof step into a H-proof step. The translation is trivial and immediate. The proof in H is in Virtual Deduction notation. It is a working proof in the sense that, if it has no errors, each theorem and deduction of the proof is true, but may or may not, after being translated into conventional notation, unify with any theorem or deduction scheme in set.mm. Each theorem or deduction scheme in set.mm has a particular form. The working proof written by the User (the "User's Proof" or "Virtual Deduction Proof") may contain theorems and deductions which would unify with a variant of a theorem or deduction scheme in set.mm, but not with any particular form of that theorem or deduction scheme in set.mm.

The computer program completeusersproof.c may be applied to a Virtual Deduction proof to automatically add steps to the proof ("technical steps") which, if possible, transforms the form of a theorem or deduction of the Virtual Deduction proof not unifiable with a theorem or deduction scheme in set.mm into a variant form which is. For theorems and deductions of the Virtual Deduction proof which are completable in this way, completeusersproof saves the User the extra work involved in satisfying the constraint that the theorem or deduction is in a form which unifies with a theorem or deduction scheme in set.mm. mmj2, which is invoked by completeusersproof, automatically finds one of the reference theorems or deductions in set.mm which unifies with each theorem and deduction in the proof satisfying this constraint and labels the theorem or the assertion step of the deduction.

The analogs in H of the postulates of G1 are the set.mm postulates. The postulates in G1 corresponding to the Metamath postulates are not the classical system G1 postulates of Kleene (pages 442 and 443). set.mm has the predicate calculus postulates and other posulates. The Kleene classical system G1 postulates correspond to predicate calculus postulates which differ from the Metamath system G1 postulates corresponding to the predicate calculus postulates of Metamath's system H. Metamath's predicate calculus G1 postulates are presumably deducible from the Kleene classical G1 postulates and the Kleene classical G1 postulates are deducible from Metamath's G1 postulates. It should be recognized that, because of the different postulates, the classical G1 system corresponding to Metamath's system H is not identical to Kleene's classical system G1.

Why not create a separate database (setg.mm) of proofs in G1, avoiding the need to translate from H to G1 and from G1 back to H? The translations are trivial. Sequents make the language more complex than is necessary. More direct proving using sequent calculus may be done as a means towards the end of constructing proofs in H. Then, the language may be kept as simple as possible. A system G1 database would be redundant because it would duplicate the information contained in the corresponding system H database.

For earlier proofs, each "User's Proof" in the web page description of a Virtual Deduction proof in set.mm is the analogue in H of the User's working proof in G1. The User's Proof is automatically completed by completeusersproof.cmd (superseded by completeusersproof.c in September of 2016). The completed proof is the Virtual Deduction proof, which is the analogue in H of the corresponding fully detailed proof in G1. The completed Virtual Deduction proof of these earlier proofs may be automatically translated into a conventional Metamath proof.

The input for completeusersproof.c is a Virtual Deduction proof. Unlike completeusersproof.cmd, the completed proof is in conventional notation. completeusersproof.c eliminates the virtual deduction notation of the Virtual Deduction proof after utilizing the information it provides.

Applying mmj2's unify command is essential to completeusersproof. The mmj2 program is invoked within the completeusersproof.c function mmj2Unify(). The original mmj2 program was written by Mel L. O'Cat. Mario Carneiro has enhanced it. mmj2Unify() is called multiple times during the execution of completeusersproof.

A Virtual Deduction proof is a Metamath-specific version of a Natural Deduction Proof. In order for mmj2 to complete a Virtual Deduction proof it is necessary that each theorem or deduction of the proof is in a form which unifies with a theorem or deduction scheme in set.mm. completeusersproof weakens this constraint.

The User may write a Virtual Deduction proof and automatically transform it into a complete Metamath proof using the completeusersproof tool. The completed proof has been checked by the Metamath program. The task of writing a complete Metamath proof is reduced to writing what is essentially a Natural Deduction Proof.

The completeusersproof program and all associated files necessary to use it may be downloaded from the Metamath web site. All syntax definitions, theorems, and deductions necessary to create Virtual Deduction proofs are contained in set.mm. Examples of Virtual Deduction proofs in mmj2 Proof Worksheet .txt format are included in the completeusersproof download.

Generally, proving using Virtual Deduction and completeusersproof reduces the amount of Metamath-specific knowledge required by the User. Often, no knowledge of the specific theorems and deductions in set.mm is required to write some of the subproofs of a Virtual Deduction proof. Often, no knowledge of the Metamath-specific names of reference theorems and deductions in set.mm is required for writing some of the subproofs of a User's Proof. Often, the User may write subproofs of a proof using theorems or deductions commonly used in mathematics and correctly assume that some form of each is contained in set.mm and that completeusersproof will automatically generate the technical steps necessary to utilize them to complete the subproofs. Often, the fraction of the work which may be considered tedious is reduced and the total amount of work is reduced.

wff (   𝜑   ▶   𝜓   )

20.31.5  Virtual Deduction Theorems

Definitiondf-vd1 39103 Definition of virtual deduction. (Contributed by Alan Sare, 21-Apr-2011.) (New usage is discouraged.)
((   𝜑   ▶   𝜓   ) ↔ (𝜑𝜓))

Theoremin1 39104 Inference form of df-vd1 39103. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )       (𝜑𝜓)

Theoremiin1 39105 in1 39104 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)       (𝜑𝜓)

Theoremdfvd1ir 39106 Inference form of df-vd1 39103 with the virtual deduction as the assertion. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)       (   𝜑   ▶   𝜓   )

Theoremidn1 39107 Virtual deduction identity rule which is id 22 with virtual deduction symbols. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜑   )

Theoremdfvd1imp 39108 Left-to-right part of definition of virtual deduction. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((   𝜑   ▶   𝜓   ) → (𝜑𝜓))

Theoremdfvd1impr 39109 Right-to-left part of definition of virtual deduction. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (   𝜑   ▶   𝜓   ))

Syntaxwvd2 39110 Syntax for a 2-hypothesis virtual deduction. (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ▶   𝜒   )

Definitiondf-vd2 39111 Definition of a 2-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011.) (New usage is discouraged.)
((   𝜑   ,   𝜓   ▶   𝜒   ) ↔ ((𝜑𝜓) → 𝜒))

Theoremdfvd2 39112 Definition of a 2-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((   𝜑   ,   𝜓   ▶   𝜒   ) ↔ (𝜑 → (𝜓𝜒)))

Syntaxwvhc2 39113 Syntax for a 2-element virtual hypotheses collection. (Contributed by Alan Sare, 23-Apr-2015.) (New usage is discouraged.)
wff (   𝜑   ,   𝜓   )

Definitiondf-vhc2 39114 Definition of a 2-element virtual hypotheses collection. (Contributed by Alan Sare, 23-Apr-2015.) (New usage is discouraged.)
((   𝜑   ,   𝜓   ) ↔ (𝜑𝜓))

Theoremdfvd2an 39115 Definition of a 2-hypothesis virtual deduction in vd conjunction form. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
((   (   𝜑   ,   𝜓   )   ▶   𝜒   ) ↔ ((𝜑𝜓) → 𝜒))

Theoremdfvd2ani 39116 Inference form of dfvd2an 39115. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (   𝜑   ,   𝜓   )   ▶   𝜒   )       ((𝜑𝜓) → 𝜒)

Theoremdfvd2anir 39117 Right-to-left inference form of dfvd2an 39115. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → 𝜒)       (   (   𝜑   ,   𝜓   )   ▶   𝜒   )

Theoremdfvd2i 39118 Inference form of dfvd2 39112. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )       (𝜑 → (𝜓𝜒))

Theoremdfvd2ir 39119 Right-to-left inference form of dfvd2 39112. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))       (   𝜑   ,   𝜓   ▶   𝜒   )

Syntaxwvd3 39120 Syntax for a 3-hypothesis virtual deduction. (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )

Syntaxwvhc3 39121 Syntax for a 3-element virtual hypotheses collection. (Contributed by Alan Sare, 13-Jun-2015.) (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ,   𝜒   )

Definitiondf-vhc3 39122 Definition of a 3-element virtual hypotheses collection. (Contributed by Alan Sare, 13-Jun-2015.) (New usage is discouraged.)
((   𝜑   ,   𝜓   ,   𝜒   ) ↔ (𝜑𝜓𝜒))

Definitiondf-vd3 39123 Definition of a 3-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011.) (New usage is discouraged.)
((   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   ) ↔ ((𝜑𝜓𝜒) → 𝜃))

Theoremdfvd3 39124 Definition of a 3-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   ) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))

Theoremdfvd3i 39125 Inference form of dfvd3 39124. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )       (𝜑 → (𝜓 → (𝜒𝜃)))

Theoremdfvd3ir 39126 Right-to-left inference form of dfvd3 39124. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )

Theoremdfvd3an 39127 Definition of a 3-hypothesis virtual deduction in vd conjunction form. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
((   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   ) ↔ ((𝜑𝜓𝜒) → 𝜃))

Theoremdfvd3ani 39128 Inference form of dfvd3an 39127. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   )       ((𝜑𝜓𝜒) → 𝜃)

Theoremdfvd3anir 39129 Right-to-left inference form of dfvd3an 39127. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓𝜒) → 𝜃)       (   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   )

Syntaxwvhc4 39130 Syntax for a 4-element virtual hypotheses collection. (Contributed by Alan Sare, 17-Oct-2017.) (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ,   𝜒   ,   𝜃   )

Syntaxwvhc5 39131 Syntax for a 5-element virtual hypotheses collection. (Contributed by Alan Sare, 17-Oct-2017.) (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ,   𝜒   ,   𝜃   ,   𝜏   )

Syntaxwvhc6 39132 Syntax for a 6-element virtual hypotheses collection. (Contributed by Alan Sare, 17-Oct-2017.) (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ,   𝜒   ,   𝜃   ,   𝜏   ,   𝜂   )

Syntaxwvhc7 39133 Syntax for a 7-element virtual hypotheses collection. (Contributed by Alan Sare, 17-Oct-2017.) (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ,   𝜒   ,   𝜃   ,   𝜏   ,   𝜂   ,   𝜁   )

Syntaxwvhc8 39134 Syntax for an 8-element virtual hypotheses collection. (Contributed by Alan Sare, 17-Oct-2017.) (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ,   𝜒   ,   𝜃   ,   𝜏   ,   𝜂   ,   𝜁   ,   𝜎   )

Syntaxwvhc9 39135 Syntax for a 9-element virtual hypotheses collection. (Contributed by Alan Sare, 17-Oct-2017.) (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ,   𝜒   ,   𝜃   ,   𝜏   ,   𝜂   ,   𝜁   ,   𝜎   ,   𝜌   )

Syntaxwvhc10 39136 Syntax for a 10-element virtual hypotheses collection. (Contributed by Alan Sare, 17-Oct-2017.) (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ,   𝜒   ,   𝜃   ,   𝜏   ,   𝜂   ,   𝜁   ,   𝜎   ,   𝜌   ,   𝜇   )

Syntaxwvhc11 39137 Syntax for an 11-element virtual hypotheses collection. (Contributed by Alan Sare, 17-Oct-2017.) (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ,   𝜒   ,   𝜃   ,   𝜏   ,   𝜂   ,   𝜁   ,   𝜎   ,   𝜌   ,   𝜇   ,   𝜆   )

Syntaxwvhc12 39138 Syntax for a 12-element virtual hypotheses collection. (Contributed by Alan Sare, 17-Oct-2017.) (New usage is discouraged.)
wff (   𝜑   ,   𝜓   ,   𝜒   ,   𝜃   ,   𝜏   ,   𝜂   ,   𝜁   ,   𝜎   ,   𝜌   ,   𝜇   ,   𝜆   ,   𝜅   )

Theoremvd01 39139 A virtual hypothesis virtually infers a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       (   𝜓   ▶   𝜑   )

Theoremvd02 39140 Two virtual hypotheses virtually infer a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       (   𝜓   ,   𝜒   ▶   𝜑   )

Theoremvd03 39141 A theorem is virtually inferred by the 3 virtual hypotheses. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       (   𝜓   ,   𝜒   ,   𝜃   ▶   𝜑   )

Theoremvd12 39142 A virtual deduction with 1 virtual hypothesis virtually inferring a virtual conclusion infers that the same conclusion is virtually inferred by the same virtual hypothesis and an additional hypothesis. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )       (   𝜑   ,   𝜒   ▶   𝜓   )

Theoremvd13 39143 A virtual deduction with 1 virtual hypothesis virtually inferring a virtual conclusion infers that the same conclusion is virtually inferred by the same virtual hypothesis and a two additional hypotheses. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )       (   𝜑   ,   𝜒   ,   𝜃   ▶   𝜓   )

Theoremvd23 39144 A virtual deduction with 2 virtual hypotheses virtually inferring a virtual conclusion infers that the same conclusion is virtually inferred by the same 2 virtual hypotheses and a third hypothesis. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )       (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   )

Theoremdfvd2imp 39145 The virtual deduction form of a 2-antecedent nested implication implies the 2-antecedent nested implication. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((   𝜑   ,   𝜓   ▶   𝜒   ) → (𝜑 → (𝜓𝜒)))

Theoremdfvd2impr 39146 A 2-antecedent nested implication implies its virtual deduction form. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → (   𝜑   ,   𝜓   ▶   𝜒   ))

Theoremin2 39147 The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )       (   𝜑   ▶   (𝜓𝜒)   )

Theoremint2 39148 The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. Conventional form of int2 39148 is ex 449. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (   𝜑   ,   𝜓   )   ▶   𝜒   )       (   𝜑   ▶   (𝜓𝜒)   )

Theoremiin2 39149 in2 39147 without virtual deductions. (Contributed by Alan Sare, 20-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓𝜒))

Theoremin2an 39150 The virtual deduction introduction rule converting the second conjunct of the second virtual hypothesis into the antecedent of the conclusion. expd 451 is the non-virtual deduction form of in2an 39150. (Contributed by Alan Sare, 30-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   (𝜓𝜒)   ▶   𝜃   )       (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )

Theoremin3 39151 The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )       (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )

Theoremiin3 39152 in3 39151 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → (𝜓 → (𝜒𝜃)))

Theoremin3an 39153 The virtual deduction introduction rule converting the second conjunct of the third virtual hypothesis into the antecedent of the conclusion. exp4a 632 is the non-virtual deduction form of in3an 39153. (Contributed by Alan Sare, 25-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ,   (𝜒𝜃)   ▶   𝜏   )       (   𝜑   ,   𝜓   ,   𝜒   ▶   (𝜃𝜏)   )

Theoremint3 39154 The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. Conventional form of int3 39154 is 3expia 1286. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   )       (   (   𝜑   ,   𝜓   )   ▶   (𝜒𝜃)   )

Theoremidn2 39155 Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜓   )

Theoremiden2 39156 Virtual deduction identity rule. simpr 476 in conjunction form Virtual Deduction notation. (Contributed by Alan Sare, 5-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (   𝜑   ,   𝜓   )   ▶   𝜓   )

Theoremidn3 39157 Virtual deduction identity rule for three virtual hypotheses. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ,   𝜒   ▶   𝜒   )

Theoremgen11 39158* Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1895 is gen11 39158 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )       (   𝜑   ▶   𝑥𝜓   )

Theoremgen11nv 39159 Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis without distinct variables. alrimih 1791 is gen11nv 39159 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (   𝜑   ▶   𝜓   )       (   𝜑   ▶   𝑥𝜓   )

Theoremgen12 39160* Virtual deduction generalizing rule for two quantifying variables and one virtual hypothesis. gen12 39160 is alrimivv 1896 with virtual deductions. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )       (   𝜑   ▶   𝑥𝑦𝜓   )

Theoremgen21 39161* Virtual deduction generalizing rule for one quantifying variables and two virtual hypothesis. gen21 39161 is alrimdv 1897 with virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )       (   𝜑   ,   𝜓   ▶   𝑥𝜒   )

Theoremgen21nv 39162 Virtual deduction form of alrimdh 1830. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (   𝜑   ,   𝜓   ▶   𝜒   )       (   𝜑   ,   𝜓   ▶   𝑥𝜒   )

Theoremgen31 39163* Virtual deduction generalizing rule for one quantifying variable and three virtual hypothesis. gen31 39163 is ggen31 39077 with virtual deductions. (Contributed by Alan Sare, 22-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )       (   𝜑   ,   𝜓   ,   𝜒   ▶   𝑥𝜃   )

Theoremgen22 39164* Virtual deduction generalizing rule for two quantifying variables and two virtual hypothesis. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )       (   𝜑   ,   𝜓   ▶   𝑥𝑦𝜒   )

Theoremggen22 39165* gen22 39164 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝑦𝜒))

Theoremexinst 39166 Existential Instantiation. Virtual deduction form of exlimexi 39047. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (   𝑥𝜑   ,   𝜑   ▶   𝜓   )       (∃𝑥𝜑𝜓)

Theoremexinst01 39167 Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in [Margaris] p. 79 and E in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (   𝜑   ,   𝜓   ▶   𝜒   )    &   (𝜑 → ∀𝑥𝜑)    &   (𝜒 → ∀𝑥𝜒)       (   𝜑   ▶   𝜒   )

Theoremexinst11 39168 Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in [Margaris] p. 79 and E in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝑥𝜓   )    &   (   𝜑   ,   𝜓   ▶   𝜒   )    &   (𝜑 → ∀𝑥𝜑)    &   (𝜒 → ∀𝑥𝜒)       (   𝜑   ▶   𝜒   )

Theoreme1a 39169 A Virtual deduction elimination rule. syl 17 is e1a 39169 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (𝜓𝜒)       (   𝜑   ▶   𝜒   )

Theoremel1 39170 A Virtual deduction elimination rule. syl 17 is el1 39170 without virtual deductions. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (𝜓𝜒)       (   𝜑   ▶   𝜒   )

Theoreme1bi 39171 Biconditional form of e1a 39169. sylib 208 is e1bi 39171 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (𝜓𝜒)       (   𝜑   ▶   𝜒   )

Theoreme1bir 39172 Right biconditional form of e1a 39169. sylibr 224 is e1bir 39172 without virtual deductions. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (𝜒𝜓)       (   𝜑   ▶   𝜒   )

Theoreme2 39173 A virtual deduction elimination rule. syl6 35 is e2 39173 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (𝜒𝜃)       (   𝜑   ,   𝜓   ▶   𝜃   )

Theoreme2bi 39174 Biconditional form of e2 39173. syl6ib 241 is e2bi 39174 without virtual deductions. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (𝜒𝜃)       (   𝜑   ,   𝜓   ▶   𝜃   )

Theoreme2bir 39175 Right biconditional form of e2 39173. syl6ibr 242 is e2bir 39175 without virtual deductions. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (𝜃𝜒)       (   𝜑   ,   𝜓   ▶   𝜃   )

Theoremee223 39176 e223 39177 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓𝜃))    &   (𝜑 → (𝜓 → (𝜏𝜂)))    &   (𝜒 → (𝜃 → (𝜂𝜁)))       (𝜑 → (𝜓 → (𝜏𝜁)))

Theoreme223 39177 A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ,   𝜓   ▶   𝜃   )    &   (   𝜑   ,   𝜓   ,   𝜏   ▶   𝜂   )    &   (𝜒 → (𝜃 → (𝜂𝜁)))       (   𝜑   ,   𝜓   ,   𝜏   ▶   𝜁   )

Theoreme222 39178 A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ,   𝜓   ▶   𝜃   )    &   (   𝜑   ,   𝜓   ▶   𝜏   )    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )

Theoreme220 39179 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ,   𝜓   ▶   𝜃   )    &   𝜏    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )

Theoremee220 39180 e220 39179 without virtual deductions. (Contributed by Alan Sare, 12-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓𝜃))    &   𝜏    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))

Theoreme202 39181 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   𝜃    &   (   𝜑   ,   𝜓   ▶   𝜏   )    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )

Theoremee202 39182 e202 39181 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   𝜃    &   (𝜑 → (𝜓𝜏))    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))

Theoreme022 39183 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (   𝜓   ,   𝜒   ▶   𝜃   )    &   (   𝜓   ,   𝜒   ▶   𝜏   )    &   (𝜑 → (𝜃 → (𝜏𝜂)))       (   𝜓   ,   𝜒   ▶   𝜂   )

Theoremee022 39184 e022 39183 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜓 → (𝜒𝜃))    &   (𝜓 → (𝜒𝜏))    &   (𝜑 → (𝜃 → (𝜏𝜂)))       (𝜓 → (𝜒𝜂))

Theoreme002 39185 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   𝜓    &   (   𝜒   ,   𝜃   ▶   𝜏   )    &   (𝜑 → (𝜓 → (𝜏𝜂)))       (   𝜒   ,   𝜃   ▶   𝜂   )

Theoremee002 39186 e002 39185 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   𝜓    &   (𝜒 → (𝜃𝜏))    &   (𝜑 → (𝜓 → (𝜏𝜂)))       (𝜒 → (𝜃𝜂))

Theoreme020 39187 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (   𝜓   ,   𝜒   ▶   𝜃   )    &   𝜏    &   (𝜑 → (𝜃 → (𝜏𝜂)))       (   𝜓   ,   𝜒   ▶   𝜂   )

Theoremee020 39188 e020 39187 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜓 → (𝜒𝜃))    &   𝜏    &   (𝜑 → (𝜃 → (𝜏𝜂)))       (𝜓 → (𝜒𝜂))

Theoreme200 39189 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   𝜃    &   𝜏    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )

Theoremee200 39190 e200 39189 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   𝜃    &   𝜏    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))

Theoreme221 39191 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ,   𝜓   ▶   𝜃   )    &   (   𝜑   ▶   𝜏   )    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )

Theoremee221 39192 e221 39191 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓𝜃))    &   (𝜑𝜏)    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))

Theoreme212 39193 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ▶   𝜃   )    &   (   𝜑   ,   𝜓   ▶   𝜏   )    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )

Theoremee212 39194 e212 39193 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑𝜃)    &   (𝜑 → (𝜓𝜏))    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))

Theoreme122 39195 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ,   𝜒   ▶   𝜃   )    &   (   𝜑   ,   𝜒   ▶   𝜏   )    &   (𝜓 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜒   ▶   𝜂   )

Theoreme112 39196 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ▶   𝜒   )    &   (   𝜑   ,   𝜃   ▶   𝜏   )    &   (𝜓 → (𝜒 → (𝜏𝜂)))       (   𝜑   ,   𝜃   ▶   𝜂   )

Theoremee112 39197 e112 39196 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑 → (𝜃𝜏))    &   (𝜓 → (𝜒 → (𝜏𝜂)))       (𝜑 → (𝜃𝜂))

Theoreme121 39198 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ,   𝜒   ▶   𝜃   )    &   (   𝜑   ▶   𝜏   )    &   (𝜓 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜒   ▶   𝜂   )

Theoreme211 39199 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ▶   𝜃   )    &   (   𝜑   ▶   𝜏   )    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )

Theoremee211 39200 e211 39199 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑𝜃)    &   (𝜑𝜏)    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
 Copyright terms: Public domain < Previous  Next >