![]() |
Metamath
Proof Explorer Theorem List (p. 372 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lcfl4N 37101* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ∨ (𝐿‘𝐺) = 𝑉))) | ||
Theorem | lcfl5 37102* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (𝐿‘𝐺) ∈ ran 𝐼)) | ||
Theorem | lcfl5a 37103 | Property of a functional with a closed kernel. TODO: Make lcfl5 37102 etc. obsolete and rewrite w/out 𝐶 hypothesis? (Contributed by NM, 29-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ (𝐿‘𝐺) ∈ ran 𝐼)) | ||
Theorem | lcfl6lem 37104* | Lemma for lcfl6 37106. A functional 𝐺 (whose kernel is closed by dochsnkr 37078) is comletely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) & ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) ⇒ ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) | ||
Theorem | lcfl7lem 37105* | Lemma for lcfl7N 37107. If two functionals 𝐺 and 𝐽 are equal, they are determined by the same vector. (Contributed by NM, 4-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ 𝐽 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌)))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐺 = 𝐽) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | lcfl6 37106* | Property of a functional with a closed kernel. Note that (𝐿‘𝐺) = 𝑉 means the functional is zero by lkr0f 34699. (Contributed by NM, 3-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ((𝐿‘𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))) | ||
Theorem | lcfl7N 37107* | Property of a functional with a closed kernel. Every nonzero functional is determined by a unique nonzero vector. Note that (𝐿‘𝐺) = 𝑉 means the functional is zero by lkr0f 34699. (Contributed by NM, 4-Jan-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ((𝐿‘𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))) | ||
Theorem | lcfl8 37108* | Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}))) | ||
Theorem | lcfl8a 37109* | Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}))) | ||
Theorem | lcfl8b 37110* | Property of a nonzero functional with a closed kernel. (Contributed by NM, 4-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑌 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 ∖ {𝑌})) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) | ||
Theorem | lcfl9a 37111 | Property implying that a functional has a closed kernel. (Contributed by NM, 16-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) | ||
Theorem | lclkrlem1 37112* | The set of functionals having closed kernels is closed under scalar product. (Contributed by NM, 28-Dec-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐶) | ||
Theorem | lclkrlem2a 37113 | Lemma for lclkr 37139. Use lshpat 34661 to show that the intersection of a hyperplane with a noncomparable sum of atoms is an atom. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{𝐵})) ⇒ ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) ∈ 𝐴) | ||
Theorem | lclkrlem2b 37114 | Lemma for lclkr 37139. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) ⇒ ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) ∈ 𝐴) | ||
Theorem | lclkrlem2c 37115 | Lemma for lclkr 37139. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ 𝐽 = (LSHyp‘𝑈) ⇒ ⊢ (𝜑 → ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵})) ∈ 𝐽) | ||
Theorem | lclkrlem2d 37116 | Lemma for lclkr 37139. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (𝜑 → ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵})) ∈ ran 𝐼) | ||
Theorem | lclkrlem2e 37117 | Lemma for lclkr 37139. The kernel of the sum is closed when the kernels of the summands are equal and closed. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐸) = (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2f 37118 | Lemma for lclkr 37139. Construct a closed hyperplane under the kernel of the sum. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) & ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽) ⇒ ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) ⊆ (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2g 37119 | Lemma for lclkr 37139. Comparable hyperplanes are equal, so the kernel of the sum is closed. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) & ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2h 37120 | Lemma for lclkr 37139. Eliminate the (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽 hypothesis. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2i 37121 | Lemma for lclkr 37139. Eliminate the (𝐿‘𝐸) ≠ (𝐿‘𝐺) hypothesis. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2j 37122 | Lemma for lclkr 37139. Kernel closure when 𝑌 is zero. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 = 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2k 37123 | Lemma for lclkr 37139. Kernel closure when 𝑋 is zero. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 = 0 ) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2l 37124 | Lemma for lclkr 37139. Eliminate the 𝑋 ≠ 0, 𝑌 ≠ 0 hypotheses. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2m 37125 | Lemma for lclkr 37139. Construct a vector 𝐵 that makes the sum of functionals zero. Combine with 𝐵 ∈ 𝑉 to shorten overall proof. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐵 ∈ 𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 )) | ||
Theorem | lclkrlem2n 37126 | Lemma for lclkr 37139. (Contributed by NM, 12-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2o 37127 | Lemma for lclkr 37139. When 𝐵 is nonzero, the vectors 𝑋 and 𝑌 can't both belong to the hyperplane generated by 𝐵. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑈)) ⇒ ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) | ||
Theorem | lclkrlem2p 37128 | Lemma for lclkr 37139. When 𝐵 is zero, 𝑋 and 𝑌 must colinear, so their orthocomplements must be comparable. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑌}) ⊆ ( ⊥ ‘{𝑋})) | ||
Theorem | lclkrlem2q 37129 | Lemma for lclkr 37139. The sum has a closed kernel when 𝐵 is nonzero. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑈)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2r 37130 | Lemma for lclkr 37139. When 𝐵 is zero, i.e. when 𝑋 and 𝑌 are colinear, the intersection of the kernels of 𝐸 and 𝐺 equal the kernel of 𝐺, so the kernels of 𝐺 and the sum are comparable. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2s 37131 | Lemma for lclkr 37139. Thus, the sum has a closed kernel when 𝐵 is zero. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2t 37132 | Lemma for lclkr 37139. We eliminate all hypotheses with 𝐵 here. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2u 37133 | Lemma for lclkr 37139. lclkrlem2t 37132 with 𝑋 and 𝑌 swapped. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) ≠ 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2v 37134 | Lemma for lclkr 37139. When the hypotheses of lclkrlem2u 37133 and lclkrlem2u 37133 are negated, the functional sum must be zero, so the kernel is the vector space. We make use of the law of excluded middle, dochexmid 37074, which requires the orthomodular law dihoml4 36983 (Lemma 3.3 of [Holland95] p. 214). (Contributed by NM, 16-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) ⇒ ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) = 𝑉) | ||
Theorem | lclkrlem2w 37135 | Lemma for lclkr 37139. This is the same as lclkrlem2u 37133 and lclkrlem2u 37133 with the inequality hypotheses negated. When the sum of two functionals is zero at each generating vector, the kernel is the vector space and therefore closed. (Contributed by NM, 16-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2x 37136 | Lemma for lclkr 37139. Eliminate by cases the hypotheses of lclkrlem2u 37133, lclkrlem2u 37133 and lclkrlem2w 37135. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2y 37137 | Lemma for lclkr 37139. Restate the hypotheses for 𝐸 and 𝐺 to say their kernels are closed, in order to eliminate the generating vectors 𝑋 and 𝑌. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐸))) = (𝐿‘𝐸)) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
Theorem | lclkrlem2 37138* | The set of functionals having closed kernels is closed under vector (functional) addition. Lemmas lclkrlem2a 37113 through lclkrlem2y 37137 are used for the proof. Here we express lclkrlem2y 37137 in terms of membership in the set 𝐶 of functionals with closed kernels. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐸 ∈ 𝐶) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐶) | ||
Theorem | lclkr 37139* | The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of [Holland95] p. 218, line 20, stating "The fM that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝑆) | ||
Theorem | lcfls1lem 37140* | Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) |
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} ⇒ ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) | ||
Theorem | lcfls1N 37141* | Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.) |
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄))) | ||
Theorem | lcfls1c 37142* | Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015.) |
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} & ⊢ 𝐷 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⇒ ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐷 ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) | ||
Theorem | lclkrslem1 37143* | The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is closed under scalar product. (Contributed by NM, 27-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐶) | ||
Theorem | lclkrslem2 37144* | The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is closed under scalar product. (Contributed by NM, 28-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝐸 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐶) | ||
Theorem | lclkrs 37145* | The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑅 is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr 37139 proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr 37139 a special case of this? (Contributed by NM, 29-Jan-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑇 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝑇) | ||
Theorem | lclkrs2 37146* | The set of functionals with closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is a subspace of the dual space containing functionals with closed kernels. Note that 𝑅 is the value given by mapdval 37234. (Contributed by NM, 12-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑇 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝑅 = {𝑔 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑄)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑅 ∈ 𝑇 ∧ 𝑅 ⊆ 𝐶)) | ||
Theorem | lcfrvalsnN 37147* | Reconstruction from the dual space span of a singleton. (Contributed by NM, 19-Feb-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑁 = (LSpan‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑄 = ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘(𝐿‘𝑓)) & ⊢ 𝑅 = (𝑁‘{𝐺}) ⇒ ⊢ (𝜑 → 𝑄 = ( ⊥ ‘(𝐿‘𝐺))) | ||
Theorem | lcfrlem1 37148 | Lemma for lcfr 37191. Note that 𝑋 is z in Mario's notes. (Contributed by NM, 27-Feb-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) & ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) ⇒ ⊢ (𝜑 → (𝐻‘𝑋) = 0 ) | ||
Theorem | lcfrlem2 37149 | Lemma for lcfr 37191. (Contributed by NM, 27-Feb-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) & ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) & ⊢ 𝐿 = (LKer‘𝑈) ⇒ ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘𝐻)) | ||
Theorem | lcfrlem3 37150 | Lemma for lcfr 37191. (Contributed by NM, 27-Feb-2015.) |
⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) & ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) & ⊢ 𝐿 = (LKer‘𝑈) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐿‘𝐻)) | ||
Theorem | lcfrlem4 37151* | Lemma for lcfr 37191. (Contributed by NM, 10-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑉) | ||
Theorem | lcfrlem5 37152* | Lemma for lcfr 37191. The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is closed under scalar product. TODO: share hypotheses with others. Use more consistent variable names here or elsewhere when possible. (Contributed by NM, 5-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ 𝑄 = ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘(𝐿‘𝑓)) & ⊢ (𝜑 → 𝑋 ∈ 𝑄) & ⊢ 𝐶 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑄) | ||
Theorem | lcfrlem6 37153* | Lemma for lcfr 37191. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) & ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
Theorem | lcfrlem7 37154* | Lemma for lcfr 37191. Closure of vector sum when one vector is zero. TODO: share hypotheses with others. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑌 = 0 ) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
Theorem | lcfrlem8 37155* | Lemma for lcf1o 37157 and lcfr 37191. (Contributed by NM, 21-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐽‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) | ||
Theorem | lcfrlem9 37156* | Lemma for lcf1o 37157. (This part has undesirable $d's on 𝐽 and 𝜑 that we remove in lcf1o 37157.) TODO: ugly proof; maybe have better subtheorems or abbreviate some ℩𝑘 expansions with 𝐽‘𝑧? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) | ||
Theorem | lcf1o 37157* | Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) | ||
Theorem | lcfrlem10 37158* | Lemma for lcfr 37191. (Contributed by NM, 23-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐽‘𝑋) ∈ 𝐹) | ||
Theorem | lcfrlem11 37159* | Lemma for lcfr 37191. (Contributed by NM, 23-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘(𝐽‘𝑋)) = ( ⊥ ‘{𝑋})) | ||
Theorem | lcfrlem12N 37160* | Lemma for lcfr 37191. (Contributed by NM, 23-Feb-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ 𝐵 = (0g‘𝑆) & ⊢ (𝜑 → 𝑌 ∈ ( ⊥ ‘{𝑋})) ⇒ ⊢ (𝜑 → ((𝐽‘𝑋)‘𝑌) = 𝐵) | ||
Theorem | lcfrlem13 37161* | Lemma for lcfr 37191. (Contributed by NM, 8-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐽‘𝑋) ∈ (𝐶 ∖ {𝑄})) | ||
Theorem | lcfrlem14 37162* | Lemma for lcfr 37191. (Contributed by NM, 10-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ 𝑁 = (LSpan‘𝑈) ⇒ ⊢ (𝜑 → ( ⊥ ‘(𝐿‘(𝐽‘𝑋))) = (𝑁‘{𝑋})) | ||
Theorem | lcfrlem15 37163* | Lemma for lcfr 37191. (Contributed by NM, 9-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑋)))) | ||
Theorem | lcfrlem16 37164* | Lemma for lcfr 37191. (Contributed by NM, 8-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑃 = (LSubSp‘𝐷) & ⊢ (𝜑 → 𝐺 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ⊆ 𝐶) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → 𝑋 ∈ (𝐸 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐽‘𝑋) ∈ 𝐺) | ||
Theorem | lcfrlem17 37165 | Lemma for lcfr 37191. Condition needed more than once. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) | ||
Theorem | lcfrlem18 37166 | Lemma for lcfr 37191. (Contributed by NM, 24-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑋, 𝑌}) = (( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌}))) | ||
Theorem | lcfrlem19 37167 | Lemma for lcfr 37191. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}))) | ||
Theorem | lcfrlem20 37168 | Lemma for lcfr 37191. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) | ||
Theorem | lcfrlem21 37169 | Lemma for lcfr 37191. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) | ||
Theorem | lcfrlem22 37170 | Lemma for lcfr 37191. (Contributed by NM, 24-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝐴) | ||
Theorem | lcfrlem23 37171 | Lemma for lcfr 37191. TODO: this proof was built from other proof pieces that may change 𝑁‘{𝑋, 𝑌} into subspace sum and back unnecessarily, or similar things. (Contributed by NM, 1-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ ⊕ = (LSSum‘𝑈) ⇒ ⊢ (𝜑 → (( ⊥ ‘{𝑋, 𝑌}) ⊕ 𝐵) = ( ⊥ ‘{(𝑋 + 𝑌)})) | ||
Theorem | lcfrlem24 37172* | Lemma for lcfr 37191. (Contributed by NM, 24-Feb-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑋, 𝑌}) = ((𝐿‘(𝐽‘𝑋)) ∩ (𝐿‘(𝐽‘𝑌)))) | ||
Theorem | lcfrlem25 37173* | Lemma for lcfr 37191. Special case of lcfrlem35 37183 when ((𝐽‘𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) = 𝑄) & ⊢ (𝜑 → 𝐼 ≠ 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) = (𝐿‘(𝐽‘𝑌))) | ||
Theorem | lcfrlem26 37174* | Lemma for lcfr 37191. Special case of lcfrlem36 37184 when ((𝐽‘𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) = 𝑄) & ⊢ (𝜑 → 𝐼 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑌)))) | ||
Theorem | lcfrlem27 37175* | Lemma for lcfr 37191. Special case of lcfrlem37 37185 when ((𝐽‘𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) = 𝑄) & ⊢ (𝜑 → 𝐼 ≠ 0 ) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) & ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
Theorem | lcfrlem28 37176* | Lemma for lcfr 37191. TODO: This can be a hypothesis since the zero version of (𝐽‘𝑌)‘𝐼 needs it. (Contributed by NM, 9-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) ⇒ ⊢ (𝜑 → 𝐼 ≠ 0 ) | ||
Theorem | lcfrlem29 37177* | Lemma for lcfr 37191. (Contributed by NM, 9-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) ⇒ ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) ∈ 𝑅) | ||
Theorem | lcfrlem30 37178* | Lemma for lcfr 37191. (Contributed by NM, 6-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) ⇒ ⊢ (𝜑 → 𝐶 ∈ (LFnl‘𝑈)) | ||
Theorem | lcfrlem31 37179* | Lemma for lcfr 37191. (Contributed by NM, 10-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) & ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) ≠ 𝑄) & ⊢ (𝜑 → 𝐶 = (0g‘𝐷)) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | ||
Theorem | lcfrlem32 37180* | Lemma for lcfr 37191. (Contributed by NM, 10-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) & ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) ≠ 𝑄) ⇒ ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) | ||
Theorem | lcfrlem33 37181* | Lemma for lcfr 37191. (Contributed by NM, 10-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) & ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) = 𝑄) ⇒ ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) | ||
Theorem | lcfrlem34 37182* | Lemma for lcfr 37191. (Contributed by NM, 10-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) ⇒ ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) | ||
Theorem | lcfrlem35 37183* | Lemma for lcfr 37191. (Contributed by NM, 2-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) ⇒ ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) = (𝐿‘𝐶)) | ||
Theorem | lcfrlem36 37184* | Lemma for lcfr 37191. (Contributed by NM, 6-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) | ||
Theorem | lcfrlem37 37185* | Lemma for lcfr 37191. (Contributed by NM, 8-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) & ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
Theorem | lcfrlem38 37186* | Lemma for lcfr 37191. Combine lcfrlem27 37175 and lcfrlem37 37185. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ (𝜑 → 𝐺 ⊆ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ≠ 0 ) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
Theorem | lcfrlem39 37187* | Lemma for lcfr 37191. Eliminate 𝐽. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ (𝜑 → 𝐺 ⊆ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
Theorem | lcfrlem40 37188* | Lemma for lcfr 37191. Eliminate 𝐵 and 𝐼. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ (𝜑 → 𝐺 ⊆ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
Theorem | lcfrlem41 37189* | Lemma for lcfr 37191. Eliminate span condition. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ (𝜑 → 𝐺 ⊆ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
Theorem | lcfrlem42 37190* | Lemma for lcfr 37191. Eliminate nonzero condition. (Contributed by NM, 11-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ (𝜑 → 𝐺 ⊆ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
Theorem | lcfr 37191* | Reconstruction of a subspace from a dual subspace of functionals with closed kernels. Our proof was suggested by Mario Carneiro, 20-Feb-2015. (Contributed by NM, 5-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑇 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝑄 = ∪ 𝑔 ∈ 𝑅 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑅 ∈ 𝑇) & ⊢ (𝜑 → 𝑅 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝑄 ∈ 𝑆) | ||
Syntax | clcd 37192 | Extend class notation with vector space of functionals with closed kernels. |
class LCDual | ||
Definition | df-lcdual 37193* | Dual vector space of functionals with closed kernels. Note: we could also define this directly without mapd by using mapdrn 37255. TODO: see if it makes sense to go back and replace some of the LDual stuff with this. TODO: We could simplify df-mapd 37231 using (Base‘((LCDual‘𝐾)‘𝑊)). (Contributed by NM, 13-Mar-2015.) |
⊢ LCDual = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)}))) | ||
Theorem | lcdfval 37194* | Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑋 → (LCDual‘𝐾) = (𝑤 ∈ 𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))) | ||
Theorem | lcdval 37195* | Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)})) | ||
Theorem | lcdval2 37196* | Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⇒ ⊢ (𝜑 → 𝐶 = (𝐷 ↾s 𝐵)) | ||
Theorem | lcdlvec 37197 | The dual vector space of functionals with closed kernels is a left vector space. (Contributed by NM, 14-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐶 ∈ LVec) | ||
Theorem | lcdlmod 37198 | The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐶 ∈ LMod) | ||
Theorem | lcdvbase 37199* | Vector base set of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝐶) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑉 = 𝐵) | ||
Theorem | lcdvbasess 37200 | The vector base set of the closed kernel dual space is a set of functionals. (Contributed by NM, 15-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝐶) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑉 ⊆ 𝐹) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |