![]() |
Metamath
Proof Explorer Theorem List (p. 368 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dvhvaddcl 36701 | Closure of the vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸)) | ||
Theorem | dvhvaddcomN 36702 | Commutativity of vector sum. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) | ||
Theorem | dvhvaddass 36703 | Associativity of vector sum. (Contributed by NM, 31-Oct-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = (𝐹 + (𝐺 + 𝐼))) | ||
Theorem | dvhvscacbv 36704* | Change bound variables to isolate them later. (Contributed by NM, 20-Nov-2013.) |
⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) ⇒ ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) | ||
Theorem | dvhvscaval 36705* | The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013.) |
⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) ⇒ ⊢ ((𝑈 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸)) → (𝑈 · 𝐹) = 〈(𝑈‘(1st ‘𝐹)), (𝑈 ∘ (2nd ‘𝐹))〉) | ||
Theorem | dvhfvsca 36706* | Scalar product operation for the constructed full vector space H. (Contributed by NM, 2-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)) | ||
Theorem | dvhvsca 36707 | Scalar product operation for the constructed full vector space H. (Contributed by NM, 2-Nov-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝑅 · 𝐹) = 〈(𝑅‘(1st ‘𝐹)), (𝑅 ∘ (2nd ‘𝐹))〉) | ||
Theorem | dvhopvsca 36708 | Scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Feb-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸)) → (𝑅 · 〈𝐹, 𝑋〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑋)〉) | ||
Theorem | dvhvscacl 36709 | Closure of the scalar product operation for the constructed full vector space H. (Contributed by NM, 12-Feb-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝑅 · 𝐹) ∈ (𝑇 × 𝐸)) | ||
Theorem | tendoinvcl 36710* | Closure of multiplicative inverse for endomorphism. We use the scalar inverse of the vector space since it is much simpler than the direct inverse of cdleml8 36588. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝑁 = (invr‘𝐹) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∈ 𝐸 ∧ (𝑁‘𝑆) ≠ 𝑂)) | ||
Theorem | tendolinv 36711* | Left multiplicative inverse for endomorphism. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝑁 = (invr‘𝐹) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∘ 𝑆) = ( I ↾ 𝑇)) | ||
Theorem | tendorinv 36712* | Right multiplicative inverse for endomorphism. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝑁 = (invr‘𝐹) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑆 ∘ (𝑁‘𝑆)) = ( I ↾ 𝑇)) | ||
Theorem | dvhgrp 36713 | The full vector space 𝑈 constructed from a Hilbert lattice 𝐾 (given a fiducial hyperplane 𝑊) is a group. (Contributed by NM, 19-Oct-2013.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐼 = (invg‘𝐷) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ Grp) | ||
Theorem | dvhlveclem 36714 | Lemma for dvhlvec 36715. TODO: proof substituting inner part first shorter/longer than substituting outer part first? TODO: break up into smaller lemmas? TODO: does 𝜑 → method shorten proof? (Contributed by NM, 22-Oct-2013.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝐷) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐼 = (invg‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LVec) | ||
Theorem | dvhlvec 36715 | The full vector space 𝑈 constructed from a Hilbert lattice 𝐾 (given a fiducial hyperplane 𝑊) is a left module. (Contributed by NM, 23-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑈 ∈ LVec) | ||
Theorem | dvhlmod 36716 | The full vector space 𝑈 constructed from a Hilbert lattice 𝐾 (given a fiducial hyperplane 𝑊) is a left module. (Contributed by NM, 23-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑈 ∈ LMod) | ||
Theorem | dvh0g 36717* | The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) | ||
Theorem | dvheveccl 36718 | Properties of a unit vector that we will use later as a convenient reference vector. This vector is called "e" in the remark after Lemma M of [Crawley] p. 121. line 17. See also dvhopN 36722 and dihpN 36942. (Contributed by NM, 27-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐸 = 〈( I ↾ 𝐵), ( I ↾ 𝑇)〉 & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ { 0 })) | ||
Theorem | dvhopclN 36719 | Closure of a DVecH vector expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) → 〈𝐹, 𝑈〉 ∈ (𝑇 × 𝐸)) | ||
Theorem | dvhopaddN 36720* | Sum of DVecH vectors expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) ⇒ ⊢ (((𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸) ∧ (𝐺 ∈ 𝑇 ∧ 𝑉 ∈ 𝐸)) → (〈𝐹, 𝑈〉𝐴〈𝐺, 𝑉〉) = 〈(𝐹 ∘ 𝐺), (𝑈𝑃𝑉)〉) | ||
Theorem | dvhopspN 36721* | Scalar product of DVecH vector expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) ⇒ ⊢ ((𝑅 ∈ 𝐸 ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → (𝑅𝑆〈𝐹, 𝑈〉) = 〈(𝑅‘𝐹), (𝑅 ∘ 𝑈)〉) | ||
Theorem | dvhopN 36722* | Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by 〈( I ↾ 𝐵), ( I ↾ 𝑇)〉, 𝑈, 〈𝐹, 𝑂〉. We swapped the order of vector sum (their juxtaposition i.e. composition) to show 〈𝐹, 𝑂〉 first. Note that 𝑂 and ( I ↾ 𝑇) are the zero and one of the division ring 𝐸, and ( I ↾ 𝐵) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) & ⊢ 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈((1st ‘𝑓) ∘ (1st ‘𝑔)), ((2nd ‘𝑓)𝑃(2nd ‘𝑔))〉) & ⊢ 𝑆 = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) & ⊢ 𝑂 = (𝑐 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑈 ∈ 𝐸)) → 〈𝐹, 𝑈〉 = (〈𝐹, 𝑂〉𝐴(𝑈𝑆〈( I ↾ 𝐵), ( I ↾ 𝑇)〉))) | ||
Theorem | dvhopellsm 36723* | Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (〈𝐹, 𝑇〉 ∈ (𝑋 ⊕ 𝑌) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ 𝑋 ∧ 〈𝑧, 𝑤〉 ∈ 𝑌) ∧ 〈𝐹, 𝑇〉 = (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉)))) | ||
Theorem | cdlemm10N 36724* | The image of the map 𝐺 is the entire one-dimensional subspace (𝐼‘𝑉). Remark after Lemma M of [Crawley] p. 121 line 23. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐶 = {𝑟 ∈ 𝐴 ∣ (𝑟 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑟 ≤ 𝑊)} & ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑠) & ⊢ 𝐺 = (𝑞 ∈ 𝐶 ↦ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑞)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ran 𝐺 = (𝐼‘𝑉)) | ||
Syntax | cocaN 36725 | Extend class notation with subspace orthocomplement for DVecA partial vector space. |
class ocA | ||
Definition | df-docaN 36726* | Define subspace orthocomplement for DVecA partial vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 6-Dec-2013.) |
⊢ ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))))) | ||
Theorem | docaffvalN 36727* | Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (ocA‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))))) | ||
Theorem | docafvalN 36728* | Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))) | ||
Theorem | docavalN 36729* | Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (𝑁‘𝑋) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) | ||
Theorem | docaclN 36730 | Closure of subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ( ⊥ ‘𝑋) ∈ ran 𝐼) | ||
Theorem | diaocN 36731 | Value of partial isomorphism A at lattice orthocomplement (using a Sasaki projection to get orthocomplement relative to the fiducial co-atom 𝑊). (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘((( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝑁‘(𝐼‘𝑋))) | ||
Theorem | doca2N 36732 | Double orthocomplement of partial isomorphism A. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → ( ⊥ ‘( ⊥ ‘(𝐼‘𝑋))) = (𝐼‘𝑋)) | ||
Theorem | doca3N 36733 | Double orthocomplement of partial isomorphism A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | ||
Theorem | dvadiaN 36734 | Any closed subspace is a member of the range of partial isomorphism A, showing the isomorphism maps onto the set of closed subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → 𝑋 ∈ ran 𝐼) | ||
Theorem | diarnN 36735* | Partial isomorphism A maps onto the set of all closed subspaces of partial vector space A. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) | ||
Theorem | diaf1oN 36736* | The partial isomorphism A for a lattice 𝐾 is a one-to-one, onto function. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. See diadm 36641 for the domain. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) | ||
Syntax | cdjaN 36737 | Extend class notation with subspace join for DVecA partial vector space. |
class vA | ||
Definition | df-djaN 36738* | Define (closed) subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) |
⊢ vA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦)))))) | ||
Theorem | djaffvalN 36739* | Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (vA‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))) | ||
Theorem | djafvalN 36740* | Subspace join for DVecA partial vector space. TODO: take out hypothesis .i, no longer used. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ⊥ ‘(( ⊥ ‘𝑥) ∩ ( ⊥ ‘𝑦))))) | ||
Theorem | djavalN 36741 | Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (𝑋𝐽𝑌) = ( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌)))) | ||
Theorem | djaclN 36742 | Closure of subspace join for DVecA partial vector space. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (𝑋𝐽𝑌) ∈ ran 𝐼) | ||
Theorem | djajN 36743 | Transfer lattice join to DVecA partial vector space closed subspace join. Part of Lemma M of [Crawley] p. 120 line 29, with closed subspace join rather than subspace sum. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) | ||
Syntax | cdib 36744 | Extend class notation with isomorphism B. |
class DIsoB | ||
Definition | df-dib 36745* | Isomorphism B is isomorphism A extended with an extra dimension set to the zero vector component i.e. the zero endormorphism. Its domain is lattice elements less than or equal to the fiducial co-atom 𝑤. (Contributed by NM, 8-Dec-2013.) |
⊢ DIsoB = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})))) | ||
Theorem | dibffval 36746* | The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (DIsoB‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))) | ||
Theorem | dibfval 36747* | The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽‘𝑥) × { 0 }))) | ||
Theorem | dibval 36748* | The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) | ||
Theorem | dibopelvalN 36749* | Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐽) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) | ||
Theorem | dibval2 36750* | Value of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((𝐽‘𝑋) × { 0 })) | ||
Theorem | dibopelval2 36751* | Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (𝐽‘𝑋) ∧ 𝑆 = 0 ))) | ||
Theorem | dibval3N 36752* | Value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ({𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} × { 0 })) | ||
Theorem | dibelval3 36753* | Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑋) ↔ ∃𝑓 ∈ 𝑇 (𝑌 = 〈𝑓, 0 〉 ∧ (𝑅‘𝑓) ≤ 𝑋))) | ||
Theorem | dibopelval3 36754* | Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 0 ))) | ||
Theorem | dibelval1st 36755 | Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (1st ‘𝑌) ∈ (𝐽‘𝑋)) | ||
Theorem | dibelval1st1 36756 | Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (1st ‘𝑌) ∈ 𝑇) | ||
Theorem | dibelval1st2N 36757 | Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (𝑅‘(1st ‘𝑌)) ≤ 𝑋) | ||
Theorem | dibelval2nd 36758* | Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (2nd ‘𝑌) = 0 ) | ||
Theorem | dibn0 36759 | The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) | ||
Theorem | dibfna 36760 | Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐽) | ||
Theorem | dibdiadm 36761 | Domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = dom 𝐽) | ||
Theorem | dibfnN 36762* | Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) | ||
Theorem | dibdmN 36763* | Domain of the partial isomorphism A. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) | ||
Theorem | dibeldmN 36764 | Member of domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊))) | ||
Theorem | dibord 36765 | The isomorphism B for a lattice 𝐾 is order-preserving in the region under co-atom 𝑊. (Contributed by NM, 24-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) | ||
Theorem | dib11N 36766 | The isomorphism B for a lattice 𝐾 is one-to-one in the region under co-atom 𝑊. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) = (𝐼‘𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | dibf11N 36767 | The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) | ||
Theorem | dibclN 36768 | Closure of partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ ran 𝐼) | ||
Theorem | dibvalrel 36769 | The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) | ||
Theorem | dib0 36770 | The value of partial isomorphism B at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 27-Mar-2014.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑂 = (0g‘𝑈) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {𝑂}) | ||
Theorem | dib1dim 36771* | Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠 ∈ 𝐸 𝑔 = 〈(𝑠‘𝐹), 𝑂〉}) | ||
Theorem | dibglbN 36772* | Partial isomorphism B of a lattice glb. (Contributed by NM, 9-Mar-2014.) (New usage is discouraged.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ dom 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝐼‘𝑥)) | ||
Theorem | dibintclN 36773 | The intersection of partial isomorphism B closed subspaces is a closed subspace. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑆 ∈ ran 𝐼) | ||
Theorem | dib1dim2 36774* | Two expressions for a 1-dimensional subspace of vector space H (when 𝐹 is a nonzero vector i.e. non-identity translation). (Contributed by NM, 24-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = (𝑁‘{〈𝐹, 𝑂〉})) | ||
Theorem | dibss 36775 | The partial isomorphism B maps to a set of vectors in full vector space H. (Contributed by NM, 1-Jan-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ⊆ 𝑉) | ||
Theorem | diblss 36776 | The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ 𝑆) | ||
Theorem | diblsmopel 36777* | Membership in subspace sum for partial isomorphism B. (Contributed by NM, 21-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑉 = ((DVecA‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑉) & ⊢ ✚ = (LSSum‘𝑈) & ⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) & ⊢ (𝜑 → (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ⇒ ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ✚ (𝐼‘𝑌)) ↔ (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ∧ 𝑆 = 𝑂))) | ||
Syntax | cdic 36778 | Extend class notation with isomorphism C. |
class DIsoC | ||
Definition | df-dic 36779* | Isomorphism C has domain of lattice atoms that are not less than or equal to the fiducial co-atom 𝑤. The value is a one-dimensional subspace generated by the pair consisting of the ℩ vector below and the endomorphism ring unit. Definition of phi(q) in [Crawley] p. 121. Note that we use the fixed atom ((oc k ) 𝑤) to represent the p in their "Choose an atom p..." on line 21. (Contributed by NM, 15-Dec-2013.) |
⊢ DIsoC = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}))) | ||
Theorem | dicffval 36780* | The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (DIsoC‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))) | ||
Theorem | dicfval 36781* | The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑞)) ∧ 𝑠 ∈ 𝐸)})) | ||
Theorem | dicval 36782* | The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)}) | ||
Theorem | dicopelval 36783* | Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Feb-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) & ⊢ 𝐹 ∈ V & ⊢ 𝑆 ∈ V ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑄) ↔ (𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑆 ∈ 𝐸))) | ||
Theorem | dicelvalN 36784* | Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ (2nd ‘𝑌) ∈ 𝐸)))) | ||
Theorem | dicval2 36785* | The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 20-Feb-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) & ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)}) | ||
Theorem | dicelval3 36786* | Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) & ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) | ||
Theorem | dicopelval2 36787* | Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 20-Feb-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) & ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) & ⊢ 𝐹 ∈ V & ⊢ 𝑆 ∈ V ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑄) ↔ (𝐹 = (𝑆‘𝐺) ∧ 𝑆 ∈ 𝐸))) | ||
Theorem | dicelval2N 36788* | Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) & ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st ‘𝑌) = ((2nd ‘𝑌)‘𝐺) ∧ (2nd ‘𝑌) ∈ 𝐸)))) | ||
Theorem | dicfnN 36789* | Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) | ||
Theorem | dicdmN 36790* | Domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑝 ∈ 𝐴 ∣ ¬ 𝑝 ≤ 𝑊}) | ||
Theorem | dicvalrelN 36791 | The value of partial isomorphism C is a relation. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) | ||
Theorem | dicssdvh 36792 | The partial isomorphism C maps to a set of vectors in full vector space H. (Contributed by NM, 19-Jan-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ 𝑉) | ||
Theorem | dicelval1sta 36793* | Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) = ((2nd ‘𝑌)‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) | ||
Theorem | dicelval1stN 36794 | Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) ∈ 𝑇) | ||
Theorem | dicelval2nd 36795 | Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (2nd ‘𝑌) ∈ 𝐸) | ||
Theorem | dicvaddcl 36796 | Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 + 𝑌) ∈ (𝐼‘𝑄)) | ||
Theorem | dicvscacl 36797 | Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 · 𝑌) ∈ (𝐼‘𝑄)) | ||
Theorem | dicn0 36798 | The value of the partial isomorphism C is not empty. (Contributed by NM, 15-Feb-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ≠ ∅) | ||
Theorem | diclss 36799 | The value of partial isomorphism C is a subspace of partial vector space H. (Contributed by NM, 16-Feb-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ∈ 𝑆) | ||
Theorem | diclspsn 36800* | The value of isomorphism C is spanned by vector 𝐹. Part of proof of Lemma N of [Crawley] p. 121 line 29. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = (𝑁‘{〈𝐹, ( I ↾ 𝑇)〉})) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |