![]() |
Metamath
Proof Explorer Theorem List (p. 348 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lkrssv 34701 | The kernel of a linear functional is a set of vectors. (Contributed by NM, 1-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐾‘𝐺) ⊆ 𝑉) | ||
Theorem | lkrsc 34702 | The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑅 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) | ||
Theorem | lkrscss 34703 | The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅})))) | ||
Theorem | eqlkr 34704* | Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 18-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) | ||
Theorem | eqlkr2 34705* | Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘𝑓 · (𝑉 × {𝑟}))) | ||
Theorem | eqlkr3 34706 | Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) & ⊢ (𝜑 → (𝐺‘𝑋) = (𝐻‘𝑋)) & ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) ⇒ ⊢ (𝜑 → 𝐺 = 𝐻) | ||
Theorem | lkrlsp 34707 | The subspace sum of a kernel and the span of a vector not in the kernel (by ellkr 34694) is the whole vector space. (Contributed by NM, 19-Apr-2014.) |
⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) | ||
Theorem | lkrlsp2 34708 | The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) | ||
Theorem | lkrlsp3 34709 | The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) | ||
Theorem | lkrshp 34710 | The kernel of a nonzero functional is a hyperplane. (Contributed by NM, 29-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (𝐾‘𝐺) ∈ 𝐻) | ||
Theorem | lkrshp3 34711 | The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 17-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ (𝑉 × { 0 }))) | ||
Theorem | lkrshpor 34712 | The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) | ||
Theorem | lkrshp4 34713 | A kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ≠ 𝑉 ↔ (𝐾‘𝐺) ∈ 𝐻)) | ||
Theorem | lshpsmreu 34714* | Lemma for lshpkrex 34723. Show uniqueness of ring multiplier 𝑘 when a vector 𝑋 is broken down into components, one in a hyperplane and the other outside of it . TODO: do we need the cbvrexv 3202 for 𝑎 to 𝑐? (Contributed by NM, 4-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ (𝜑 → ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) | ||
Theorem | lshpkrlem1 34715* | Lemma for lshpkrex 34723. The value of tentative functional 𝐺 is zero iff its argument belongs to hyperplane 𝑈. (Contributed by NM, 14-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝐺‘𝑋) = 0 )) | ||
Theorem | lshpkrlem2 34716* | Lemma for lshpkrex 34723. The value of tentative functional 𝐺 is a scalar. (Contributed by NM, 16-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐾) | ||
Theorem | lshpkrlem3 34717* | Lemma for lshpkrex 34723. Defining property of 𝐺‘𝑋. (Contributed by NM, 15-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) | ||
Theorem | lshpkrlem4 34718* | Lemma for lshpkrex 34723. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑉 ∧ 𝑠 ∈ 𝑉) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) · 𝑍))) | ||
Theorem | lshpkrlem5 34719* | Lemma for lshpkrex 34723. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) | ||
Theorem | lshpkrlem6 34720* | Lemma for lshpkrex 34723. Show linearlity of 𝐺. (Contributed by NM, 17-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) | ||
Theorem | lshpkrcl 34721* | The set 𝐺 defined by hyperplane 𝑈 is a linear functional. (Contributed by NM, 17-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐹) | ||
Theorem | lshpkr 34722* | The kernel of functional 𝐺 is the hyperplane defining it. (Contributed by NM, 17-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) & ⊢ 𝐿 = (LKer‘𝑊) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = 𝑈) | ||
Theorem | lshpkrex 34723* | There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.) |
⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) | ||
Theorem | lshpset2N 34724* | The set of all hyperplanes of a left module or left vector space equals the set of all kernels of nonzero functionals. (Contributed by NM, 17-Jul-2014.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) | ||
Theorem | islshpkrN 34725* | The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾‘𝑔) or (𝐾‘𝑔) = 𝑈 as in lshpkrex 34723? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) | ||
Theorem | lfl1dim 34726* | Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘𝑓 · (𝑉 × {𝑘}))}) | ||
Theorem | lfl1dim2N 34727* | Equivalent expressions for a 1-dim subspace (ray) of functionals. TODO: delete this if not useful; lfl1dim 34726 may be more compatible with lspsn 19050. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∈ 𝐹 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘𝑓 · (𝑉 × {𝑘}))}) | ||
Syntax | cld 34728 | Extend class notation with left dualvector space. |
class LDual | ||
Definition | df-ldual 34729* | Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows us to reuse our existing collection of left vector space theorems. The restriction on ∘𝑓 (+g‘𝑣) allows it to be a set; see ofmres 7206. Note the operation reversal in the scalar product to allow us to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.) |
⊢ LDual = (𝑣 ∈ V ↦ ({〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑣))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘𝑓 (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉})) | ||
Theorem | ldualset 34730* | Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows us to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow us to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = ( ∘𝑓 + ↾ (𝐹 × 𝐹)) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 · (𝑉 × {𝑘}))) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ✚ 〉, 〈(Scalar‘ndx), 𝑂〉} ∪ {〈( ·𝑠 ‘ndx), ∙ 〉})) | ||
Theorem | ldualvbase 34731 | The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑉 = (Base‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑉 = 𝐹) | ||
Theorem | ldualelvbase 34732 | Utility theorem for converting a functional to a vector of the dual space in order to use standard vector theorems. (Contributed by NM, 6-Jan-2015.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑉 = (Base‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑉) | ||
Theorem | ldualfvadd 34733 | Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ ⨣ = ( ∘𝑓 + ↾ (𝐹 × 𝐹)) ⇒ ⊢ (𝜑 → ✚ = ⨣ ) | ||
Theorem | ldualvadd 34734 | Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ✚ 𝐻) = (𝐺 ∘𝑓 + 𝐻)) | ||
Theorem | ldualvaddcl 34735 | The value of vector addition in the dual of a vector space is a functional. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 + 𝐻) ∈ 𝐹) | ||
Theorem | ldualvaddval 34736 | The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) | ||
Theorem | ldualsca 34737 | The ring of scalars of the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝑂 = (oppr‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑅 = 𝑂) | ||
Theorem | ldualsbase 34738 | Base set of scalar ring for the dual of a vector space. (Contributed by NM, 24-Oct-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐿 = (Base‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐾 = 𝐿) | ||
Theorem | ldualsaddN 34739 | Scalar addition for the dual of a vector space. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ + = (+g‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ ✚ = (+g‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) ⇒ ⊢ (𝜑 → ✚ = + ) | ||
Theorem | ldualsmul 34740 | Scalar multiplication for the dual of a vector space. (Contributed by NM, 19-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = (.r‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ ∙ = (.r‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑋 ∙ 𝑌) = (𝑌 · 𝑋)) | ||
Theorem | ldualfvs 34741* | Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘𝑓 × (𝑉 × {𝑘}))) ⇒ ⊢ (𝜑 → ∙ = · ) | ||
Theorem | ldualvs 34742 | Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘𝑓 × (𝑉 × {𝑋}))) | ||
Theorem | ldualvsval 34743 | Value of scalar product operation value for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺‘𝐴) × 𝑋)) | ||
Theorem | ldualvscl 34744 | The scalar product operation value is a functional. (Contributed by NM, 18-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐹) | ||
Theorem | ldualvaddcom 34745 | Commutative law for vector (functional) addition. (Contributed by NM, 17-Jan-2015.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐹) & ⊢ (𝜑 → 𝑌 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
Theorem | ldualvsass 34746 | Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) | ||
Theorem | ldualvsass2 34747 | Associative law for scalar product operation, using operations from the dual space. (Contributed by NM, 20-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑄 = (Scalar‘𝐷) & ⊢ × = (.r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑋 × 𝑌) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) | ||
Theorem | ldualvsdi1 34748 | Distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻))) | ||
Theorem | ldualvsdi2 34749 | Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) | ||
Theorem | ldualgrplem 34750 | Lemma for ldualgrp 34751. (Contributed by NM, 22-Oct-2014.) |
⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = ∘𝑓 (+g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ Grp) | ||
Theorem | ldualgrp 34751 | The dual of a vector space is a group. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐷 ∈ Grp) | ||
Theorem | ldual0 34752 | The zero scalar of the dual of a vector space. (Contributed by NM, 28-Dec-2014.) |
⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝑂 = (0g‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑂 = 0 ) | ||
Theorem | ldual1 34753 | The unit scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015.) |
⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝐼 = (1r‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐼 = 1 ) | ||
Theorem | ldualneg 34754 | The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015.) |
⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑀 = (invg‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝑁 = (invg‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑁 = 𝑀) | ||
Theorem | ldual0v 34755 | The zero vector of the dual of a vector space. (Contributed by NM, 24-Oct-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑂 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑂 = (𝑉 × { 0 })) | ||
Theorem | ldual0vcl 34756 | The dual zero vector is a functional. (Contributed by NM, 5-Mar-2015.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 0 ∈ 𝐹) | ||
Theorem | lduallmodlem 34757 | Lemma for lduallmod 34758. (Contributed by NM, 22-Oct-2014.) |
⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = ∘𝑓 (+g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ LMod) | ||
Theorem | lduallmod 34758 | The dual of a left module is also a left module. (Contributed by NM, 22-Oct-2014.) |
⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐷 ∈ LMod) | ||
Theorem | lduallvec 34759 | The dual of a left vector space is also a left vector space. Note that scalar multiplication is reversed by df-oppr 18669; otherwise, the dual would be a right vector space as is sometimes the case in the literature. (Contributed by NM, 22-Oct-2014.) |
⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → 𝐷 ∈ LVec) | ||
Theorem | ldualvsub 34760 | The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) | ||
Theorem | ldualvsubcl 34761 | Closure of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 − 𝐻) ∈ 𝐹) | ||
Theorem | ldualvsubval 34762 | The value of the value of vector subtraction in the dual of a vector space. TODO: shorten with ldualvsub 34760? (Requires 𝐷 to oppr conversion.) (Contributed by NM, 26-Feb-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑆 = (-g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐺 − 𝐻)‘𝑋) = ((𝐺‘𝑋)𝑆(𝐻‘𝑋))) | ||
Theorem | ldualssvscl 34763 | Closure of scalar product in a dual subspace.) (Contributed by NM, 5-Feb-2015.) |
⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑈) | ||
Theorem | ldualssvsubcl 34764 | Closure of vector subtraction in a dual subspace.) (Contributed by NM, 9-Mar-2015.) |
⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑈) | ||
Theorem | ldual0vs 34765 | Scalar zero times a functional is the zero functional. (Contributed by NM, 17-Feb-2015.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝑂 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ( 0 · 𝐺) = 𝑂) | ||
Theorem | lkr0f2 34766 | The kernel of the zero functional is the set of all vectors. (Contributed by NM, 4-Feb-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = 0 )) | ||
Theorem | lduallkr3 34767 | The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 22-Feb-2015.) |
⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ 0 )) | ||
Theorem | lkrpssN 34768 | Proper subset relation between kernels. (Contributed by NM, 16-Feb-2015.) (New usage is discouraged.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ↔ (𝐺 ≠ 0 ∧ 𝐻 = 0 ))) | ||
Theorem | lkrin 34769 | Intersection of the kernels of 2 functionals is included in the kernel of their sum. (Contributed by NM, 7-Jan-2015.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∩ (𝐾‘𝐻)) ⊆ (𝐾‘(𝐺 + 𝐻))) | ||
Theorem | eqlkr4 34770* | Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 4-Feb-2015.) |
⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) | ||
Theorem | ldual1dim 34771* | Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑁 = (LSpan‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) | ||
Theorem | ldualkrsc 34772 | The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 28-Dec-2014.) |
⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐿‘(𝑋 · 𝐺)) = (𝐿‘𝐺)) | ||
Theorem | lkrss 34773 | The kernel of a scalar product of a functional includes the kernel of the functional. (Contributed by NM, 27-Jan-2015.) |
⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝑋 · 𝐺))) | ||
Theorem | lkrss2N 34774* | Two functionals with kernels in a subset relationship. (Contributed by NM, 17-Feb-2015.) (New usage is discouraged.) |
⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) | ||
Theorem | lkreqN 34775 | Proportional functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.) |
⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ (𝑅 ∖ { 0 })) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 = (𝐴 · 𝐻)) ⇒ ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) | ||
Theorem | lkrlspeqN 34776 | Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.) |
⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑁 = (LSpan‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = (𝐿‘𝐻)) | ||
Syntax | cops 34777 | Extend class notation with orthoposets. |
class OP | ||
Syntax | ccmtN 34778 | Extend class notation with the commutes relation. |
class cm | ||
Syntax | col 34779 | Extend class notation with orthlattices. |
class OL | ||
Syntax | coml 34780 | Extend class notation with orthomodular lattices. |
class OML | ||
Definition | df-oposet 34781* | Define the class of orthoposets, which are bounded posets with an orthocomplementation operation. Note that (Base p ) e. dom ( lub 𝑝) means there is an upper bound 1., and similarly for the 0. element. (Contributed by NM, 20-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
⊢ OP = {𝑝 ∈ Poset ∣ (((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ∧ ∃𝑜(𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝))))} | ||
Definition | df-cmtN 34782* | Define the commutes relation for orthoposets. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Nov-2011.) |
⊢ cm = (𝑝 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))}) | ||
Definition | df-ol 34783 | Define the class of ortholattices. Definition from [Kalmbach] p. 16. (Contributed by NM, 18-Sep-2011.) |
⊢ OL = (Lat ∩ OP) | ||
Definition | df-oml 34784* | Define the class of orthomodular lattices. Definition from [Kalmbach] p. 16. (Contributed by NM, 18-Sep-2011.) |
⊢ OML = {𝑙 ∈ OL ∣ ∀𝑎 ∈ (Base‘𝑙)∀𝑏 ∈ (Base‘𝑙)(𝑎(le‘𝑙)𝑏 → 𝑏 = (𝑎(join‘𝑙)(𝑏(meet‘𝑙)((oc‘𝑙)‘𝑎))))} | ||
Theorem | isopos 34785* | The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011.) (Revised by NM, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((( ⊥ ‘𝑥) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥 ∧ (𝑥 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑥))) ∧ (𝑥 ∨ ( ⊥ ‘𝑥)) = 1 ∧ (𝑥 ∧ ( ⊥ ‘𝑥)) = 0 ))) | ||
Theorem | opposet 34786 | Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.) |
⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | ||
Theorem | oposlem 34787 | Lemma for orthoposet properties. (Contributed by NM, 20-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) | ||
Theorem | op01dm 34788 | Conditions necessary for zero and unit elements to exist. (Contributed by NM, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) | ||
Theorem | op0cl 34789 | An orthoposet has a zero element. (h0elch 28240 analog.) (Contributed by NM, 12-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) | ||
Theorem | op1cl 34790 | An orthoposet has a unit element. (helch 28228 analog.) (Contributed by NM, 22-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) | ||
Theorem | op0le 34791 | Orthoposet zero is less than or equal to any element. (ch0le 28428 analog.) (Contributed by NM, 12-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) | ||
Theorem | ople0 34792 | An element less than or equal to zero equals zero. (chle0 28430 analog.) (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) | ||
Theorem | opnlen0 34793 | An element not less than another is nonzero. TODO: Look for uses of necon3bd 2837 and op0le 34791 to see if this is useful elsewhere. (Contributed by NM, 5-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑌) → 𝑋 ≠ 0 ) | ||
Theorem | lub0N 34794 | The least upper bound of the empty set is the zero element. (Contributed by NM, 15-Sep-2013.) (New usage is discouraged.) |
⊢ 1 = (lub‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → ( 1 ‘∅) = 0 ) | ||
Theorem | opltn0 34795 | A lattice element greater than zero is nonzero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) | ||
Theorem | ople1 34796 | Any element is less than the orthoposet unit. (chss 28214 analog.) (Contributed by NM, 23-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 1 ) | ||
Theorem | op1le 34797 | If the orthoposet unit is less than or equal to an element, the element equals the unit. (chle0 28430 analog.) (Contributed by NM, 5-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 1 ≤ 𝑋 ↔ 𝑋 = 1 )) | ||
Theorem | glb0N 34798 | The greatest lower bound of the empty set is the unit element. (Contributed by NM, 5-Dec-2011.) (New usage is discouraged.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → (𝐺‘∅) = 1 ) | ||
Theorem | opoccl 34799 | Closure of orthocomplement operation. (choccl 28293 analog.) (Contributed by NM, 20-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) | ||
Theorem | opococ 34800 | Double negative law for orthoposets. (ococ 28393 analog.) (Contributed by NM, 13-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |