![]() |
Metamath
Proof Explorer Theorem List (p. 344 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | xrnres2 34301 | Two ways to express restriction of range Cartesian product, cf. xrnres 34300, xrnres3 34302. (Contributed by Peter Mazsa, 6-Sep-2021.) |
⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | ||
Theorem | xrnres3 34302 | Two ways to express restriction of range Cartesian product, cf. xrnres 34300, xrnres2 34301. (Contributed by Peter Mazsa, 28-Mar-2020.) |
⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) | ||
Theorem | xrnres4 34303 | Two ways to express restriction of range Cartesian product. (Contributed by Peter Mazsa, 29-Dec-2020.) |
⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) | ||
Theorem | xrnresex 34304 | Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) | ||
Theorem | xrnidresex 34305 | Sufficient condition for a range Cartesian product with restricted identity to be a set. (Contributed by Peter Mazsa, 31-Dec-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ ( I ↾ 𝐴)) ∈ V) | ||
Theorem | xrncnvepresex 34306 | Sufficient condition for a range Cartesian product with restricted converse epsilon to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | ||
Theorem | brin2 34307 | Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)〈𝐵, 𝐵〉)) | ||
Theorem | brin3 34308 | Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) (Avoid depending on this detail.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆){{𝐵}})) | ||
Definition | df-coss 34309* |
Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by
𝑅 iff there exists a set 𝑢 such
that both 𝑢𝑅𝑥 and
𝑢𝑅𝑦 hold, i.e., both 𝑥 and
𝑦
are are elements of the 𝑅
-coset of 𝑢 (cf. dfcoss2 34311 and the comment of dfec2 7790). 𝑅 is
usually a relation.
This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to ≀ 𝑅 (cf. e.g. ~? pet ). Without the definition of ≀ 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 34312) or to the range of a range Cartesian product of classes (cf. dfcoss4 34313), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 34311. Technically, we can define it via composition (dfcoss3 34312) or as the range of a range Cartesian product (dfcoss4 34313), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions ( ~? df-funsALTV , ~? df-funALTV ) and disjoints ( ~? dfdisjs , ~? dfdisjs2 , ~? df-disjALTV , ~? dfdisjALTV2 ) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.) |
⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
Definition | df-coels 34310 | Define the class of coelements on the class 𝐴, cf. the alternate definition dfcoels 34325. Possible definitions are the special cases of dfcoss3 34312 and dfcoss4 34313. (Contributed by Peter Mazsa, 20-Nov-2019.) |
⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | ||
Theorem | dfcoss2 34311* | Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (cf. the comment of dfec2 7790). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.) |
⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} | ||
Theorem | dfcoss3 34312 | Alternate definition of the class of cosets by 𝑅 (cf. the comment of df-coss 34309). (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | ||
Theorem | dfcoss4 34313 | Alternate definition of the class of cosets by 𝑅 (cf. the comment of df-coss 34309). (Contributed by Peter Mazsa, 12-Jul-2021.) |
⊢ ≀ 𝑅 = ran (𝑅 ⋉ 𝑅) | ||
Theorem | cossex 34314 | If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.) |
⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) | ||
Theorem | cosscnvex 34315 | If 𝐴 is a set then the class of cosets by the converse of 𝐴 is a set. (Contributed by Peter Mazsa, 18-Oct-2019.) |
⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ V) | ||
Theorem | 1cosscnvepresex 34316 | Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021.) |
⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | ||
Theorem | 1cossxrncnvepresex 34317 | Sufficient condition for a restricted converse epsilon range Cartesian product to be a set. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | ||
Theorem | relcoss 34318 | Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ Rel ≀ 𝑅 | ||
Theorem | relcoels 34319 | Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
⊢ Rel ∼ 𝐴 | ||
Theorem | cossss 34320 | Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.) |
⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) | ||
Theorem | cosseq 34321 | Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.) |
⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) | ||
Theorem | cosseqi 34322 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, inference form. (Contributed by Peter Mazsa, 9-Jan-2018.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ≀ 𝐴 = ≀ 𝐵 | ||
Theorem | cosseqd 34323 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) | ||
Theorem | 1cossres 34324* | The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019.) |
⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
Theorem | dfcoels 34325* | Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.) |
⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | ||
Theorem | brcoss 34326* | 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | ||
Theorem | brcoss2 34327* | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅))) | ||
Theorem | brcoss3 34328 | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) | ||
Theorem | brcosscnvcoss 34329 | For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) | ||
Theorem | brcoels 34330* | 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) | ||
Theorem | cocossss 34331* | Two ways of saying that cosets by cosets by 𝑅 is a subclass. (Contributed by Peter Mazsa, 17-Sep-2021.) |
⊢ ( ≀ ≀ 𝑅 ⊆ 𝑆 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) | ||
Theorem | cnvcosseq 34332 | The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.) |
⊢ ◡ ≀ 𝑅 = ≀ 𝑅 | ||
Theorem | br2coss 34333 | Cosets by ≀ 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) | ||
Theorem | br1cossres 34334* | 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑅𝐶))) | ||
Theorem | br1cossres2 34335* | 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑥 ∈ 𝐴 (𝐵 ∈ [𝑥]𝑅 ∧ 𝐶 ∈ [𝑥]𝑅))) | ||
Theorem | relbrcoss 34336* | 𝐴 and 𝐵 are cosets by relation 𝑅: a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Rel 𝑅 → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑥 ∈ dom 𝑅(𝐴 ∈ [𝑥]𝑅 ∧ 𝐵 ∈ [𝑥]𝑅)))) | ||
Theorem | br1cossinres 34337* | 𝐵 and 𝐶 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (𝑆 ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐶 ∧ 𝑢𝑅𝐶)))) | ||
Theorem | br1cossxrnres 34338* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by an intersection with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (𝑆 ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢𝑆𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢𝑆𝐸 ∧ 𝑢𝑅𝐷)))) | ||
Theorem | br1cossinidres 34339* | 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) | ||
Theorem | br1cossincnvepres 34340* | 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (◡ E ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶)))) | ||
Theorem | br1cossxrnidres 34341* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ ( I ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐸 ∧ 𝑢𝑅𝐷)))) | ||
Theorem | br1cossxrncnvepres 34342* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) | ||
Theorem | dmcoss3 34343 | The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
⊢ dom ≀ 𝑅 = dom ◡𝑅 | ||
Theorem | dmcoss2 34344 | The domain of cosets is the range. (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ dom ≀ 𝑅 = ran 𝑅 | ||
Theorem | rncossdmcoss 34345 | The range of cosets is the domain of them (this should be rncoss 5418 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.) |
⊢ ran ≀ 𝑅 = dom ≀ 𝑅 | ||
Theorem | dm1cosscnvepres 34346 | The domain of cosets of the restricted converse epsilon relation is the union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.) (Revised by Peter Mazsa, 26-Sep-2021.) |
⊢ dom ≀ (◡ E ↾ 𝐴) = ∪ 𝐴 | ||
Theorem | dmcoels 34347 | The domain of coelements in 𝐴 is the union of 𝐴. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Peter Mazsa, 5-Apr-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
⊢ dom ∼ 𝐴 = ∪ 𝐴 | ||
Theorem | eldmcoss 34348* | Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 29-Mar-2019.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | ||
Theorem | eldmcoss2 34349 | Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐴)) | ||
Theorem | eldm1cossres 34350* | Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑢𝑅𝐵)) | ||
Theorem | eldm1cossres2 34351* | Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ [𝑥]𝑅)) | ||
Theorem | refrelcosslem 34352 | Lemma for the left side of the refrelcoss3 34353 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.) |
⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 | ||
Theorem | refrelcoss3 34353* | The class of cosets by 𝑅 is reflexive, cf. dfrefrel3 34406. (Contributed by Peter Mazsa, 30-Jul-2019.) |
⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) | ||
Theorem | refrelcoss2 34354 | The class of cosets by 𝑅 is reflexive, cf. dfrefrel2 34405. (Contributed by Peter Mazsa, 30-Jul-2019.) |
⊢ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | ||
Theorem | symrelcoss3 34355 | The class of cosets by 𝑅 is symmetric, cf. dfsymrel3 34436. (Contributed by Peter Mazsa, 28-Mar-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
⊢ (∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ Rel ≀ 𝑅) | ||
Theorem | symrelcoss2 34356 | The class of cosets by 𝑅 is symmetric, cf. dfsymrel2 34435. (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | ||
Theorem | cossssid 34357 | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | ||
Theorem | cossssid2 34358* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
Theorem | cossssid3 34359* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
Theorem | cossssid4 34360* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) | ||
Theorem | cossssid5 34361* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅)) | ||
Theorem | brcosscnv 34362* | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | ||
Theorem | brcosscnv2 34363 | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 12-Mar-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅)) | ||
Theorem | br1cosscnvxrn 34364 | 𝐴 and 𝐵 are cosets by the converse range Cartesian product: a binary relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡(𝑅 ⋉ 𝑆)𝐵 ↔ (𝐴 ≀ ◡𝑅𝐵 ∧ 𝐴 ≀ ◡𝑆𝐵))) | ||
Theorem | 1cosscnvxrn 34365 | Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) | ||
Theorem | cosscnvssid3 34366* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.) |
⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) | ||
Theorem | cosscnvssid4 34367* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) | ||
Theorem | cosscnvssid5 34368* | Equivalent expressions for the class of cosets by the converse of the relation 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | ||
Theorem | coss0 34369 | Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.) |
⊢ ≀ ∅ = ∅ | ||
Theorem | cossid 34370 | Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.) |
⊢ ≀ I = I | ||
Theorem | cosscnvid 34371 | Cosets by the converse identity relation are the identity relation. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ≀ ◡ I = I | ||
Theorem | trcoss 34372* | Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.) |
⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
Theorem | eleccossin 34373 | Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) | ||
Theorem | trcoss2 34374* | Equivalent expressions for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 16-Oct-2021.) |
⊢ (∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
Definition | df-rels 34375 |
Define the relations class. Proper class relations (like I, cf.
reli 5282) are not elements of it. The element of this
class and the
relation predicate are the same when 𝑅 is a set (cf. elrelsrel 34377).
The class of relations is a great tool we can use when we define classes of different relations as nullary class constants as required by the 2. point in our Guidelines http://us.metamath.org/mpeuni/mathbox.html. When we want to define a specific class of relations as a nullary class constant, the appropriate method is the following: 1. We define the specific nullary class constant for general sets (cf. e.g. df-refs 34400), then 2. we get the required class of relations by the intersection of the class of general sets above with the class of relations df-rels 34375 (cf. df-refrels 34401 and the resulting dfrefrels2 34403 and dfrefrels3 34404). 3. Finally, in order to be able to work with proper classes (like iprc 7143) as well, we define the predicate of the relation (cf. df-refrel 34402) so that it is true for the relevant proper classes (cf. refrelid 34411), and that the element of the class of the required relations (e.g. elrefrels3 34408) and this predicate are the same in case of sets (cf. elrefrelsrel 34409). (Contributed by Peter Mazsa, 13-Jun-2018.) |
⊢ Rels = 𝒫 (V × V) | ||
Theorem | elrels2 34376 | The element of the relations class (df-rels 34375) and the relation predicate (df-rel 5150) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | ||
Theorem | elrelsrel 34377 | The element of the relations class (df-rels 34375) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | ||
Theorem | elrelsrelim 34378 | The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ (𝑅 ∈ Rels → Rel 𝑅) | ||
Theorem | elrels5 34379 | Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ↾ dom 𝑅) = 𝑅)) | ||
Theorem | elrels6 34380 | Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)) | ||
Theorem | elrelscnveq3 34381* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | ||
Theorem | elrelscnveq 34382 | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) | ||
Theorem | elrelscnveq2 34383* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
Theorem | elrelscnveq4 34384* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
Theorem | cnvelrels 34385 | The converse of a set is an element of the class of relations. (Contributed by Peter Mazsa, 18-Aug-2019.) |
⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ Rels ) | ||
Theorem | cosselrels 34386 | Cosets of sets are elements of the relations class. Implies ⊢ (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.) |
⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) | ||
Theorem | cosscnvelrels 34387 | Cosets of converse sets are elements of the relations class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ Rels ) | ||
Definition | df-ssr 34388* |
Define the subsets class or the class of all subset relations. Similar
to definitions of epsilon relation (df-eprel 5058) and identity relation
(df-id 5053) classes. Subset relation class and Scott
Fenton's subset
class df-sset 32088 are the same: S = SSet (compare dfssr2 34389 with
df-sset 32088, cf. comment of df-xrn 34273), the only reason we do not use
dfssr2 34389 as the base definition of the subsets class
is the way we
defined the epsilon relation and the identity relation classes.
The binary relation on the class of all subsets and the subclass relationship (df-ss 3621) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set, cf. brssr 34391. Yet in general we use the subclass relation 𝐴 ⊆ 𝐵 both for classes and for sets, cf. the comment of df-ss 3621. The only exception (aside from directly investigating the class S e.g. in relssr 34390 or in extssr 34399) is when we have a specific purpose with its usage, like in case of df-refs 34400 vs. df-cnvrefs 34413, where we need S to define the class of reflexive sets in order to be able to define the class of converse reflexive sets with the help of the converse of S. The subsets class S has another place in set.mm as well: if we define extensional relation based on the common property in extid 34222, extep 34189 and extssr 34399, then "extrelssr" " |- ExtRel _S " is a theorem along with "extrelep" " |- ExtRel _E " and "extrelid" " |- ExtRel _I ". (Contributed by Peter Mazsa, 25-Jul-2019.) |
⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | ||
Theorem | dfssr2 34389 | Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.) |
⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) | ||
Theorem | relssr 34390 | The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ Rel S | ||
Theorem | brssr 34391 | The subset relation and subclass relationship (df-ss 3621) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | brssrid 34392 | Any set is a subset of itself. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 S 𝐴) | ||
Theorem | issetssr 34393 | Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ (𝐴 ∈ V ↔ 𝐴 S 𝐴) | ||
Theorem | brssrres 34394 | Restricted subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) | ||
Theorem | br1cnvssrres 34395 | Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) | ||
Theorem | brcnvssr 34396 | The converse of a subset relation swaps arguments. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴)) | ||
Theorem | brcnvssrid 34397 | Any set is a converse subset of itself. (Contributed by Peter Mazsa, 9-Jun-2021.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴◡ S 𝐴) | ||
Theorem | br1cossxrncnvssrres 34398* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by tail Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) | ||
Theorem | extssr 34399 | Property of subset relation, cf. extid 34222, extep 34189 and the comment of df-ssr 34388. (Contributed by Peter Mazsa, 10-Jul-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) | ||
Definition | df-refs 34400 |
Define the class of all reflexive sets. It is used only by df-refrels 34401.
We use subset relation S (df-ssr 34388) here to be able to define
converse reflexivity (df-cnvrefs 34413), cf. the comment of df-ssr 34388. The
elements of this class are not necessarily relations (vs. df-refrels 34401).
Note the similarity of the definitions df-refs 34400, df-syms 34428 and ~? df-trs , cf. the comments of dfrefrels2 34403. (Contributed by Peter Mazsa, 19-Jul-2019.) |
⊢ Refs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |