Home Metamath Proof ExplorerTheorem List (p. 336 of 429) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27903) Hilbert Space Explorer (27904-29428) Users' Mathboxes (29429-42879)

Theorem List for Metamath Proof Explorer - 33501-33600   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremwl-ax11-lem10 33501* We now have prepared everything. The unwanted variable 𝑢 is just in one place left. pm2.61 183 can be used in conjunction with wl-ax11-lem9 33500 to eliminate the second antecedent. Missing is something along the lines of ax-6 1945, so we could remove the first antecedent. But the Metamath axioms cannot accomplish this. Such a rule must reside one abstraction level higher than all others: It says that a distinctor implies a distinct variable condition on its contained setvar. This is only needed if such conditions are required, as ax-11v does. The result of this study is for me, that you cannot introduce a setvar capturing this condition, and hope to eliminate it later. (Contributed by Wolf Lammen, 30-Jun-2019.)
(∀𝑦 𝑦 = 𝑢 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)))

Theoremwl-sbcom3 33502 Substituting 𝑦 for 𝑥 and then 𝑧 for 𝑦 is equivalent to substituting 𝑧 for both 𝑥 and 𝑦. Copy of ~? sbcom3OLD with a shortened proof.

Keep this theorem for a while here because an external reference to it exists.

(Contributed by Giovanni Mascellani, 8-Apr-2018.) (Proof shortened by Wolf Lammen, 15-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.)

([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑧 / 𝑦]𝜑)

20.17.5  1. Bootstrapping classes

Syntaxwcel-wl 33503 Redefine in a class context to avoid overloading and syntax check errors in mmj2. This operator requires 𝑥 and 𝐵 distinct.
wff 𝑥𝐵

Theoremwel-wl 33504 Redefine in a set context to avoid syntax check errors in mmj2. 𝑥 and 𝑦 must be distinct. (Contributed by Wolf Lammen, 27-Nov-2021.)
wff 𝑥𝑦

Syntaxwcel2-wl 33505 Redefine in a class context to avoid overloading and syntax check errors in mmj2. 𝑥 and 𝐵 may not be distinct.
wff 𝑥𝐵

Theoremwel2-wl 33506 Redefine in a set context to avoid syntax check errors in mmj2. It is no syntactic error to assign the same variable to 𝑥 and 𝑦. (Contributed by Wolf Lammen, 27-Nov-2021.)
wff 𝑥𝑦

Axiomax-wl-8cl 33507* In ZFC, as presented in this document, classes are meant to be just a notational convenience, that can be reduced to pure set theory by means of df-clab 2638 (there stated in the eliminable property). That is, in an expression 𝑥𝐴, the class variable 𝐴 is implicitely assumed to represent an expression {𝑧𝜑} with some appropriate 𝜑. Unfortunately, 𝜑 syntactically covers any well-formed formula (wff), including 𝑧𝐴. This choice inevitably breaks the stated property. And it potentially carries over to any expression containing class variables. To fix this, a simple rule could exclude class variables at all in a class defining wff. A more elaborate rule could detect, and limit exclusion to proper classes (potentially problematic). In any case, the verification process should enforce any such rule during replacement, which it currently does not. The result is that we rely on the awareness of theorem designers to this problem. It seems, in ZFC proper classes are reduced to a few instances only, so a careful study may reveal that this limited use does not impose logical loop holes. It must be said, still, this necessary extra knowledge contradicts the general philosophy of Metamath, trying to establish certainty by a machine executable confirmation.

An extension to ZFC allows classes to exist on their own. Classes are then extensions to sets, also seamlessly extending the idea of elementhood. In order to move from the general to the specific, sets presuppose classes, so classes should be introduced first. This is somewhat in opposition to the classic order of introduction of syntactic elements, but has been carried out in the past, for example by the von-Neumann theory of classes.

In the context of Metamath, which is a purely text-based syntactical concept, no semantics are imposed at the very beginning on classes. Instead axioms will narrow down bit by bit how elementhood behaves in proofs, of course always with the intuitive understanding of a human in mind.

One basic property of elementhood we expect is that the 'element' is replaceable with something equal to it. Or that equality is finer grained than the elementhood relation. This idea is formally expressed in terms coined 'implicit substitution' in this document: ((𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴)). This axiom prepares this notation.

Note that particular constructions of classes like that in df-clab 2638 in fact allow to prove this axiom. Can we expect to eliminate this axiom then? No, the generalizing term still refers to an unexplained subterm 𝑥𝐴, so this axiom recurs in the general case. On the other hand, our axiom here stays true, even when just the existence of a class is known, as is often the case after applying the axiom of choice, without a chance to actually construct it.

We provide a version of this axiom, that requires all variables to be distinct. Step by step these restrictions are lifted, in the end covering the most general term 𝐴𝐵.

This axiom is meant as a replacement for ax-8 2032. (Contributed by Wolf Lammen, 27-Nov-2021.)

(𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))

Theoremwl-ax8clv1 33508* Lifting the distinct variable constraint on 𝑥 and 𝑦 in ax-wl-8cl 33507. (Contributed by Wolf Lammen, 27-Nov-2021.)
(𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))

Theoremwl-clelv2-just 33509* Show that the definition df-wl-clelv2 33510 is conservative. (Contributed by Wolf Lammen, 27-Nov-2021.)
(𝑥𝐴 ↔ ∀𝑢(𝑢 = 𝑥𝑢𝐴))

Definitiondf-wl-clelv2 33510* Define the term 𝑥𝐴, 𝑥 in 𝐴 permitted. (Contributed by Wolf Lammen, 27-Nov-2021.)
(𝑥𝐴 ↔ ∀𝑢(𝑢 = 𝑥𝑢𝐴))

Theoremwl-ax8clv2 33511 Axiom ax-wl-8cl 33507 carries over to our new definition df-wl-clelv2 33510. (Contributed by Wolf Lammen, 27-Nov-2021.)
(𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))

20.18  Mathbox for Brendan Leahy

Theoremrabiun 33512* Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.)
{𝑥 𝑦𝐴 𝐵𝜑} = 𝑦𝐴 {𝑥𝐵𝜑}

Theoremiundif1 33513* Indexed union of class difference with the subtrahend held constant. (Contributed by Brendan Leahy, 6-Aug-2018.)
𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶)

Theoremimadifss 33514 The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.)
((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))

Theoremcureq 33515 Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
(𝐴 = 𝐵 → curry 𝐴 = curry 𝐵)

Theoremunceq 33516 Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
(𝐴 = 𝐵 → uncurry 𝐴 = uncurry 𝐵)

Theoremcurf 33517 Functional property of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → curry 𝐹:𝐴⟶(𝐶𝑚 𝐵))

Theoremuncf 33518 Functional property of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
(𝐹:𝐴⟶(𝐶𝑚 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶)

Theoremcurfv 33519 Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
(((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))

Theoremuncov 33520 Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
((𝐴𝑉𝐵𝑊) → (𝐴uncurry 𝐹𝐵) = ((𝐹𝐴)‘𝐵))

Theoremcurunc 33521 Currying of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
((𝐹:𝐴⟶(𝐶𝑚 𝐵) ∧ 𝐵 ≠ ∅) → curry uncurry 𝐹 = 𝐹)

Theoremunccur 33522 Uncurrying of currying. (Contributed by Brendan Leahy, 5-Jun-2021.)
((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → uncurry curry 𝐹 = 𝐹)

Theoremphpreu 33523* Theorem related to pigeonhole principle. (Contributed by Brendan Leahy, 21-Aug-2020.)
((𝐴 ∈ Fin ∧ 𝐴𝐵) → (∀𝑥𝐴𝑦𝐵 𝑥 = 𝐶 ↔ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥 = 𝐶))

Theoremfinixpnum 33524* A finite Cartesian product of numerable sets is numerable. (Contributed by Brendan Leahy, 24-Feb-2019.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ dom card) → X𝑥𝐴 𝐵 ∈ dom card)

Theoremfin2solem 33525* Lemma for fin2so 33526. (Contributed by Brendan Leahy, 29-Jun-2019.)
((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) → (𝑦𝑅𝑧 → {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑧}))

Theoremfin2so 33526 Any totally ordered Tarski-finite set is finite; in particular, no amorphous set can be ordered. Theorem 2 of [Levy58]] p. 4. (Contributed by Brendan Leahy, 28-Jun-2019.)
((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝐴 ∈ Fin)

Theoremltflcei 33527 Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵𝐴 < -(⌊‘-𝐵)))

Theoremleceifl 33528 Theorem to move the floor function across a non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐴) ≤ 𝐵𝐴 ≤ (⌊‘𝐵)))

Theoremsin2h 33529 Half-angle rule for sine. (Contributed by Brendan Leahy, 3-Aug-2018.)
(𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))

Theoremcos2h 33530 Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018.)
(𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))

Theoremtan2h 33531 Half-angle rule for tangent. (Contributed by Brendan Leahy, 4-Aug-2018.)
(𝐴 ∈ (0[,)π) → (tan‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / (1 + (cos‘𝐴)))))

Theorempigt3 33532 π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.)
3 < π

Theoremlindsdom 33533 A linearly independent set in a free linear module of finite dimension over a division ring is smaller than the dimension of the module. (Contributed by Brendan Leahy, 2-Jun-2021.)
((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋𝐼)

Theoremlindsenlbs 33534 A maximal linearly independent set in a free module of finite dimension over a division ring is a basis. (Contributed by Brendan Leahy, 2-Jun-2021.)
(((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))

Theoremmatunitlindflem1 33535 One direction of matunitlindf 33537. (Contributed by Brendan Leahy, 2-Jun-2021.)
(((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))

Theoremmatunitlindflem2 33536 One direction of matunitlindf 33537. (Contributed by Brendan Leahy, 2-Jun-2021.)
((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))

Theoremmatunitlindf 33537 A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021.)
((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Unit‘(𝐼 Mat 𝑅)) ↔ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)))

Theoremptrest 33538* Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019.)
(𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴⟶Top)    &   ((𝜑𝑘𝐴) → 𝑆𝑊)       (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))

Theoremptrecube 33539* Any point in an open set of N-space is surrounded by an open cube within that set. (Contributed by Brendan Leahy, 21-Aug-2020.) (Proof shortened by AV, 28-Sep-2020.)
𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))       ((𝑆𝑅𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)

Theorempoimirlem1 33540* Lemma for poimir 33572- the vertices on either side of a skipped vertex differ in at least two dimensions. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))))    &   (𝜑𝑇:(1...𝑁)⟶ℤ)    &   (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))    &   (𝜑𝑀 ∈ (1...(𝑁 − 1)))       (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛))

Theorempoimirlem2 33541* Lemma for poimir 33572- consecutive vertices differ in at most one dimension. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))))    &   (𝜑𝑇:(1...𝑁)⟶ℤ)    &   (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))    &   (𝜑𝑉 ∈ (1...(𝑁 − 1)))    &   (𝜑𝑀 ∈ ((0...𝑁) ∖ {𝑉}))       (𝜑 → ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹𝑉)‘𝑛))

Theorempoimirlem3 33542* Lemma for poimir 33572 to add an interior point to an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑀 < 𝑁)    &   (𝜑𝑇:(1...𝑀)⟶(0..^𝐾))    &   (𝜑𝑈:(1...𝑀)–1-1-onto→(1...𝑀))       (𝜑 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵 → (⟨(𝑇 ∪ {⟨(𝑀 + 1), 0⟩}), (𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})⟩ ∈ (((0..^𝐾) ↑𝑚 (1...(𝑀 + 1))) × {𝑓𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((𝑇 ∪ {⟨(𝑀 + 1), 0⟩}) ∘𝑓 + ((((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ (1...𝑗)) × {1}) ∪ (((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵 ∧ ((𝑇 ∪ {⟨(𝑀 + 1), 0⟩})‘(𝑀 + 1)) = 0 ∧ ((𝑈 ∪ {⟨(𝑀 + 1), (𝑀 + 1)⟩})‘(𝑀 + 1)) = (𝑀 + 1)))))

Theorempoimirlem4 33543* Lemma for poimir 33572 connecting the admissible faces on the back face of the (𝑀 + 1)-cube to admissible simplices in the 𝑀-cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑀 < 𝑁)       (𝜑 → {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑀)) × {𝑓𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((1st𝑠) ∘𝑓 + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...(𝑀 + 1))) × {𝑓𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = (((1st𝑠) ∘𝑓 + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝𝐵 ∧ ((1st𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd𝑠)‘(𝑀 + 1)) = (𝑀 + 1))})

Theorempoimirlem5 33544* Lemma for poimir 33572 to establish that, for the simplices defined by a walk along the edges of an 𝑁-cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝑇𝑆)    &   (𝜑 → 0 < (2nd𝑇))       (𝜑 → (𝐹‘0) = (1st ‘(1st𝑇)))

Theorempoimirlem6 33545* Lemma for poimir 33572 establishing, for a face of a simplex defined by a walk along the edges of an 𝑁-cube, the single dimension in which successive vertices before the opposite vertex differ. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))    &   (𝜑𝑀 ∈ (1...((2nd𝑇) − 1)))       (𝜑 → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 1))‘𝑛) ≠ ((𝐹𝑀)‘𝑛)) = ((2nd ‘(1st𝑇))‘𝑀))

Theorempoimirlem7 33546* Lemma for poimir 33572, similar to poimirlem6 33545, but for vertices after the opposite vertex. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))    &   (𝜑𝑀 ∈ ((((2nd𝑇) + 1) + 1)...𝑁))       (𝜑 → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑀 − 2))‘𝑛) ≠ ((𝐹‘(𝑀 − 1))‘𝑛)) = ((2nd ‘(1st𝑇))‘𝑀))

Theorempoimirlem8 33547* Lemma for poimir 33572, establishing that away from the opposite vertex the walks in poimirlem9 33548 yield the same vertices. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))    &   (𝜑𝑈𝑆)       (𝜑 → ((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))

Theorempoimirlem9 33548* Lemma for poimir 33572, establishing the two walks that yield a given face when the opposite vertex is neither first nor last. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))    &   (𝜑𝑈𝑆)    &   (𝜑 → (2nd ‘(1st𝑈)) ≠ (2nd ‘(1st𝑇)))       (𝜑 → (2nd ‘(1st𝑈)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))))

Theorempoimirlem10 33549* Lemma for poimir 33572 establishing the cube that yields the simplex that yields a face if the opposite vertex was first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) = 0)       (𝜑 → ((𝐹‘(𝑁 − 1)) ∘𝑓 − ((1...𝑁) × {1})) = (1st ‘(1st𝑇)))

Theorempoimirlem11 33550* Lemma for poimir 33572 connecting walks that could yield from a given cube a given face opposite the first vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) = 0)    &   (𝜑𝑈𝑆)    &   (𝜑 → (2nd𝑈) = 0)    &   (𝜑𝑀 ∈ (1...𝑁))       (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st𝑈)) “ (1...𝑀)))

Theorempoimirlem12 33551* Lemma for poimir 33572 connecting walks that could yield from a given cube a given face opposite the final vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) = 𝑁)    &   (𝜑𝑈𝑆)    &   (𝜑 → (2nd𝑈) = 𝑁)    &   (𝜑𝑀 ∈ (0...(𝑁 − 1)))       (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st𝑈)) “ (1...𝑀)))

Theorempoimirlem13 33552* Lemma for poimir 33572- for at most one simplex associated with a shared face is the opposite vertex first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))       (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 0)

Theorempoimirlem14 33553* Lemma for poimir 33572- for at most one simplex associated with a shared face is the opposite vertex last on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))       (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 𝑁)

Theorempoimirlem15 33554* Lemma for poimir 33572, that the face in poimirlem22 33561 is a face. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))    &   (𝜑𝑇𝑆)    &   (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))       (𝜑 → ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ 𝑆)

Theorempoimirlem16 33555* Lemma for poimir 33572 establishing the vertices of the simplex of poimirlem17 33556. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)    &   (𝜑 → (2nd𝑇) = 0)       (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))

Theorempoimirlem17 33556* Lemma for poimir 33572 establishing existence for poimirlem18 33557. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)    &   (𝜑 → (2nd𝑇) = 0)       (𝜑 → ∃𝑧𝑆 𝑧𝑇)

Theorempoimirlem18 33557* Lemma for poimir 33572 stating that, given a face not on a front face of the main cube and a simplex in which it's opposite the first vertex on the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)    &   (𝜑 → (2nd𝑇) = 0)       (𝜑 → ∃!𝑧𝑆 𝑧𝑇)

Theorempoimirlem19 33558* Lemma for poimir 33572 establishing the vertices of the simplex in poimirlem20 33559. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)    &   (𝜑 → (2nd𝑇) = 𝑁)       (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘𝑓 + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))

Theorempoimirlem20 33559* Lemma for poimir 33572 establishing existence for poimirlem21 33560. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)    &   (𝜑 → (2nd𝑇) = 𝑁)       (𝜑 → ∃𝑧𝑆 𝑧𝑇)

Theorempoimirlem21 33560* Lemma for poimir 33572 stating that, given a face not on a back face of the cube and a simplex in which it's opposite the final point of the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)    &   (𝜑 → (2nd𝑇) = 𝑁)       (𝜑 → ∃!𝑧𝑆 𝑧𝑇)

Theorempoimirlem22 33561* Lemma for poimir 33572, that a given face belongs to exactly two simplices, provided it's not on the boundary of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}    &   (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))    &   (𝜑𝑇𝑆)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)    &   ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)       (𝜑 → ∃!𝑧𝑆 𝑧𝑇)

Theorempoimirlem23 33562* Lemma for poimir 33572, two ways of expressing the property that a face is not on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))    &   (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))    &   (𝜑𝑉 ∈ (0...𝑁))       (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))

Theorempoimirlem24 33563* Lemma for poimir 33572, two ways of expressing that a simplex has an admissible face on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝑝 = ((1st𝑠) ∘𝑓 + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)    &   ((𝜑𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁))    &   (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))    &   (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))    &   (𝜑𝑉 ∈ (0...𝑁))       (𝜑 → (∃𝑥 ∈ (((0...𝐾) ↑𝑚 (1...𝑁)) ↑𝑚 (0...(𝑁 − 1)))(𝑥 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) ∧ ((0...(𝑁 − 1)) ⊆ ran (𝑝 ∈ ran 𝑥𝐵) ∧ ∃𝑝 ∈ ran 𝑥(𝑝𝑁) ≠ 0)) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑉})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶 ∧ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁)))))

Theorempoimirlem25 33564* Lemma for poimir 33572 stating that for a given simplex such that no vertex maps to 𝑁, the number of admissible faces is even. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝑝 = ((1st𝑠) ∘𝑓 + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)    &   ((𝜑𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁))    &   (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))    &   (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))    &   ((𝜑𝑗 ∈ (0...𝑁)) → 𝑁𝑇, 𝑈⟩ / 𝑠𝐶)       (𝜑 → 2 ∥ (#‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = 𝑇, 𝑈⟩ / 𝑠𝐶}))

Theorempoimirlem26 33565* Lemma for poimir 33572 showing an even difference between the number of admissible faces and the number of admissible simplices. Equation (6) of [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝑝 = ((1st𝑠) ∘𝑓 + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)    &   ((𝜑𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁))       (𝜑 → 2 ∥ ((#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd𝑡)})𝑖 = (1st𝑡) / 𝑠𝐶}) − (#‘{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶})))

Theorempoimirlem27 33566* Lemma for poimir 33572 showing that the difference between admissible faces in the whole cube and admissible faces on the back face is even. Equation (7) of [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝑝 = ((1st𝑠) ∘𝑓 + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)    &   ((𝜑𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁))    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝𝑛) = 0)) → 𝐵 < 𝑛)    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1))       (𝜑 → 2 ∥ ((#‘{𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd𝑡)})𝑖 = (1st𝑡) / 𝑠𝐶}) − (#‘{𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...(𝑁 − 1))𝑖 = 𝐶 ∧ ((1st𝑠)‘𝑁) = 0 ∧ ((2nd𝑠)‘𝑁) = 𝑁)})))

Theorempoimirlem28 33567* Lemma for poimir 33572, a variant of Sperner's lemma. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝑝 = ((1st𝑠) ∘𝑓 + ((((2nd𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶)    &   ((𝜑𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁))    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝𝑛) = 0)) → 𝐵 < 𝑛)    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1))    &   (𝜑𝐾 ∈ ℕ)       (𝜑 → ∃𝑠 ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)

Theorempoimirlem29 33568* Lemma for poimir 33572 connecting cubes of the tessellation to neighborhoods. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))    &   𝑋 = ((𝐹‘(((1st ‘(𝐺𝑘)) ∘𝑓 + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)    &   (𝜑𝐺:ℕ⟶((ℕ0𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))    &   ((𝜑𝑘 ∈ ℕ) → ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘))    &   ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋)       (𝜑 → (∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝐶𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) → ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝐶𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))))

Theorempoimirlem30 33569* Lemma for poimir 33572 combining poimirlem29 33568 with bwth 21261. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))    &   𝑋 = ((𝐹‘(((1st ‘(𝐺𝑘)) ∘𝑓 + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)    &   (𝜑𝐺:ℕ⟶((ℕ0𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))    &   ((𝜑𝑘 ∈ ℕ) → ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘))    &   ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋)       (𝜑 → ∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))

Theorempoimirlem31 33570* Lemma for poimir 33572, assigning values to the vertices of the tessellation that meet the hypotheses of both poimirlem30 33569 and poimirlem28 33567. Equation (2) of [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)    &   𝑃 = ((1st ‘(𝐺𝑘)) ∘𝑓 + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))    &   (𝜑𝐺:ℕ⟶((ℕ0𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))    &   ((𝜑𝑘 ∈ ℕ) → ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘))    &   ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ))       ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛))

Theorempoimirlem32 33571* Lemma for poimir 33572, combining poimirlem28 33567, poimirlem30 33569, and poimirlem31 33570 to get Equation (1) of [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ ((𝐹𝑧)‘𝑛))       (𝜑 → ∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))

Theorempoimir 33572* Poincare-Miranda theorem. Theorem on [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)    &   ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ ((𝐹𝑧)‘𝑛))       (𝜑 → ∃𝑐𝐼 (𝐹𝑐) = ((1...𝑁) × {0}))

Theorembroucube 33573* Brouwer - or as Kulpa calls it, "Bohl-Brouwer" - fixed point theorem for the unit cube. Theorem on [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))    &   𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))    &   (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn (𝑅t 𝐼)))       (𝜑 → ∃𝑐𝐼 𝑐 = (𝐹𝑐))

Theoremheicant 33574 Heine-Cantor theorem: a continuous mapping between metric spaces whose domain is compact is uniformly continuous. Theorem on [Rosenlicht] p. 80. (Contributed by Brendan Leahy, 13-Aug-2018.) (Proof shortened by AV, 27-Sep-2020.)
(𝜑𝐶 ∈ (∞Met‘𝑋))    &   (𝜑𝐷 ∈ (∞Met‘𝑌))    &   (𝜑 → (MetOpen‘𝐶) ∈ Comp)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝑌 ≠ ∅)       (𝜑 → ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) = ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)))

Theoremopnmbllem0 33575* Lemma for ismblfin 33580; could also be used to shorten proof of opnmbllem 23415. (Contributed by Brendan Leahy, 13-Jul-2018.)
(𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)

Theoremmblfinlem1 33576* Lemma for ismblfin 33580, ordering the sets of dyadic intervals that are antichains under subset and whose unions are contained entirely in 𝐴. (Contributed by Brendan Leahy, 13-Jul-2018.)
((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})

Theoremmblfinlem2 33577* Lemma for ismblfin 33580, effectively one direction of the same fact for open sets, made necessary by Viaclovsky's slightly different defintion of outer measure. Note that unlike the main theorem, this holds for sets of infinite measure. (Contributed by Brendan Leahy, 21-Feb-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))

Theoremmblfinlem3 33578* The difference between two sets measurable by the criterion in ismblfin 33580 is itself measurable by the same. Corollary 0.3 of [Viaclovsky7] p. 3. (Contributed by Brendan Leahy, 25-Mar-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
(((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ))) → sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) = (vol*‘(𝐴𝐵)))

Theoremmblfinlem4 33579* Backward direction of ismblfin 33580. (Contributed by Brendan Leahy, 28-Mar-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
(((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) → (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ))

Theoremismblfin 33580* Measurability in terms of inner and outer measure. Proposition 7 of [Viaclovsky8] p. 3. (Contributed by Brendan Leahy, 4-Mar-2018.) (Revised by Brendan Leahy, 28-Mar-2018.)
((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐴 ∈ dom vol ↔ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )))

Theoremovoliunnfl 33581* ovoliun 23319 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017.)
((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))       ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)

Theoremex-ovoliunnfl 33582* Demonstration of ovoliunnfl 33581. (Contributed by Brendan Leahy, 21-Nov-2017.)
((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)

Theoremvoliunnfl 33583* voliun 23368 is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017.)
𝑆 = seq1( + , 𝐺)    &   𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))    &   ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ))       ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)

Theoremvolsupnfl 33584* volsup 23370 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 2-Jan-2018.)
((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < ))       ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)

Theorem0mbf 33585 The empty function is measurable. (Contributed by Brendan Leahy, 28-Mar-2018.)
∅ ∈ MblFn

Theoremmbfresfi 33586* Measurability of a piecewise function across arbitrarily many subsets. (Contributed by Brendan Leahy, 31-Mar-2018.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝑆 ∈ Fin)    &   (𝜑 → ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)    &   (𝜑 𝑆 = 𝐴)       (𝜑𝐹 ∈ MblFn)

Theoremmbfposadd 33587* If the sum of two measurable functions is measurable, the sum of their nonnegative parts is measurable. (Contributed by Brendan Leahy, 2-Apr-2018.)
(𝜑 → (𝑥𝐴𝐵) ∈ MblFn)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)       (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ∈ MblFn)

Theoremcnambfre 33588 A real-valued, a.e. continuous function is measurable. (Contributed by Brendan Leahy, 4-Apr-2018.)
((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol ∧ (vol*‘(𝐴 ∖ (((((topGen‘ran (,)) ↾t 𝐴) CnP (topGen‘ran (,))) ∘ E ) “ {𝐹}))) = 0) → 𝐹 ∈ MblFn)

Theoremdvtanlem 33589 Lemma for dvtan 33590- the domain of the tangent is open. (Contributed by Brendan Leahy, 8-Aug-2018.) (Proof shortened by OpenAI, 3-Jul-2020.)
(cos “ (ℂ ∖ {0})) ∈ (TopOpen‘ℂfld)

Theoremdvtan 33590 Derivative of tangent. (Contributed by Brendan Leahy, 7-Aug-2018.)
(ℂ D tan) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2))

Theoremitg2addnclem 33591* An alternate expression for the 2 integral that includes an arbitrarily small but strictly positive "buffer zone" wherever the simple function is nonzero. (Contributed by Brendan Leahy, 10-Oct-2017.) (Revised by Brendan Leahy, 10-Mar-2018.)
𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑦))) ∘𝑟𝐹𝑥 = (∫1𝑔))}       (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) = sup(𝐿, ℝ*, < ))

Theoremitg2addnclem2 33592* Lemma for itg2addnc 33594. The function described is a simple function. (Contributed by Brendan Leahy, 29-Oct-2017.)
(𝜑𝐹 ∈ MblFn)    &   (𝜑𝐹:ℝ⟶(0[,)+∞))       (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ dom ∫1)

Theoremitg2addnclem3 33593* Lemma incomprehensible in isolation split off to shorten proof of itg2addnc 33594. (Contributed by Brendan Leahy, 11-Mar-2018.)
(𝜑𝐹 ∈ MblFn)    &   (𝜑𝐹:ℝ⟶(0[,)+∞))    &   (𝜑 → (∫2𝐹) ∈ ℝ)    &   (𝜑𝐺:ℝ⟶(0[,)+∞))    &   (𝜑 → (∫2𝐺) ∈ ℝ)       (𝜑 → (∃ ∈ dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑧) = 0, 0, ((𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹𝑓 + 𝐺) ∧ 𝑠 = (∫1)) → ∃𝑡𝑢(∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓𝑧) = 0, 0, ((𝑓𝑧) + 𝑐))) ∘𝑟𝐹𝑡 = (∫1𝑓)) ∧ (∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔𝑧) = 0, 0, ((𝑔𝑧) + 𝑑))) ∘𝑟𝐺𝑢 = (∫1𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))))

Theoremitg2addnc 33594 Alternate proof of itg2add 23571 using the "buffer zone" definition from the first lemma, in which every simple function in the set is divided into to by dividing its buffer by a third and finding the largest allowable function locked to a grid laid out in increments of the new, smaller buffer up to the original simple function. The measurability of this function follows from that of the augend, and subtracting it from the original simple function yields another simple function by i1fsub 23520, which is allowable by the fact that the grid must have a mark between one third and two thirds the original buffer. This has two advantages over the current approach: first, eliminating ax-cc 9295, and second, weakening the measurability hypothesis to only the augend. (Contributed by Brendan Leahy, 31-Oct-2017.) (Revised by Brendan Leahy, 13-Mar-2018.)
(𝜑𝐹 ∈ MblFn)    &   (𝜑𝐹:ℝ⟶(0[,)+∞))    &   (𝜑 → (∫2𝐹) ∈ ℝ)    &   (𝜑𝐺:ℝ⟶(0[,)+∞))    &   (𝜑 → (∫2𝐺) ∈ ℝ)       (𝜑 → (∫2‘(𝐹𝑓 + 𝐺)) = ((∫2𝐹) + (∫2𝐺)))

Theoremitg2gt0cn 33595* itg2gt0 23572 holds on functions continuous on an open interval in the absence of ax-cc 9295. The fourth hypothesis is made unnecessary by the continuity hypothesis. (Contributed by Brendan Leahy, 16-Nov-2017.)
(𝜑𝑋 < 𝑌)    &   (𝜑𝐹:ℝ⟶(0[,)+∞))    &   ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 0 < (𝐹𝑥))    &   (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))       (𝜑 → 0 < (∫2𝐹))

Theoremibladdnclem 33596* Lemma for ibladdnc 33597; cf ibladdlem 23631, whose fifth hypothesis is rendered unnecessary by the weakened hypotheses of itg2addnc 33594. (Contributed by Brendan Leahy, 31-Oct-2017.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐷 = (𝐵 + 𝐶))    &   (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)    &   (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)    &   (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)       (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)

Theoremibladdnc 33597* Choice-free analogue of itgadd 23636. A measurability hypothesis is necessitated by the loss of mbfadd 23473; for large classes of functions, such as continuous functions, it should be relatively easy to show. (Contributed by Brendan Leahy, 1-Nov-2017.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)       (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)

Theoremitgaddnclem1 33598* Lemma for itgaddnc 33600; cf. itgaddlem1 23634. (Contributed by Brendan Leahy, 7-Nov-2017.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐵)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐶)       (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))

Theoremitgaddnclem2 33599* Lemma for itgaddnc 33600; cf. itgaddlem2 23635. (Contributed by Brendan Leahy, 10-Nov-2017.) (Revised by Brendan Leahy, 3-Apr-2018.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)       (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))

Theoremitgaddnc 33600* Choice-free analogue of itgadd 23636. (Contributed by Brendan Leahy, 11-Nov-2017.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)       (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
 Copyright terms: Public domain < Previous  Next >