![]() |
Metamath
Proof Explorer Theorem List (p. 334 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | ||||||||||||||||||||||||
Theorem | csbdif 33301 | Distribution of class substitution over difference of two classes. (Contributed by ML, 14-Jul-2020.) | ||||||||||||||||||||||
⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶) | ||||||||||||||||||||||||
Theorem | csbpredg 33302 | Move class substitution in and out of the predecessor class of a relationship. (Contributed by ML, 25-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) | ||||||||||||||||||||||||
Theorem | csbwrecsg 33303 | Move class substitution in and out of the well-founded recursive function generator . (Contributed by ML, 25-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) | ||||||||||||||||||||||||
Theorem | csbrecsg 33304 | Move class substitution in and out of recs. (Contributed by ML, 25-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) | ||||||||||||||||||||||||
Theorem | csbrdgg 33305 | Move class substitution in and out of the recursive function generator. (Contributed by ML, 25-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌rec(𝐹, 𝐼) = rec(⦋𝐴 / 𝑥⦌𝐹, ⦋𝐴 / 𝑥⦌𝐼)) | ||||||||||||||||||||||||
Theorem | csboprabg 33306* | Move class substitution in and out of class abstractions of nested ordered pairs. (Contributed by ML, 25-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈〈𝑦, 𝑧〉, 𝑑〉 ∣ 𝜑} = {〈〈𝑦, 𝑧〉, 𝑑〉 ∣ [𝐴 / 𝑥]𝜑}) | ||||||||||||||||||||||||
Theorem | csbmpt22g 33307* | Move class substitution in and out of maps-to notation for operations. (Contributed by ML, 25-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐷) = (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝑌, 𝑧 ∈ ⦋𝐴 / 𝑥⦌𝑍 ↦ ⦋𝐴 / 𝑥⦌𝐷)) | ||||||||||||||||||||||||
Theorem | mpnanrd 33308 | Eliminate the right side of a negated conjunction in an implication. (Contributed by ML, 17-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜒) | ||||||||||||||||||||||||
Theorem | con1bii2 33309 | A contraposition inference. (Contributed by ML, 18-Oct-2020.) | ||||||||||||||||||||||
⊢ (¬ 𝜑 ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ ¬ 𝜓) | ||||||||||||||||||||||||
Theorem | con2bii2 33310 | A contraposition inference. (Contributed by ML, 18-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (¬ 𝜑 ↔ 𝜓) | ||||||||||||||||||||||||
Theorem | vtoclefex 33311* | Implicit substitution of a class for a setvar variable. (Contributed by ML, 17-Oct-2020.) | ||||||||||||||||||||||
⊢ Ⅎ𝑥𝜑 & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜑) | ||||||||||||||||||||||||
Theorem | rnmptsn 33312* | The range of a function mapping to singletons. (Contributed by ML, 15-Jul-2020.) | ||||||||||||||||||||||
⊢ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | ||||||||||||||||||||||||
Theorem | f1omptsnlem 33313* | This is the core of the proof of f1omptsn 33314, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 15-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) & ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ 𝐹:𝐴–1-1-onto→𝑅 | ||||||||||||||||||||||||
Theorem | f1omptsn 33314* | A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) & ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ 𝐹:𝐴–1-1-onto→𝑅 | ||||||||||||||||||||||||
Theorem | mptsnunlem 33315* | This is the core of the proof of mptsnun 33316, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) & ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) | ||||||||||||||||||||||||
Theorem | mptsnun 33316* | A class 𝐵 is equal to the union of the class of all singletons of elements of 𝐵. (Contributed by ML, 16-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) & ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) | ||||||||||||||||||||||||
Theorem | dissneqlem 33317* | This is the core of the proof of dissneq 33318, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) | ||||||||||||||||||||||||
Theorem | dissneq 33318* | Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) | ||||||||||||||||||||||||
Theorem | exlimim 33319* | Closed form of exlimimd 33320. (Contributed by ML, 17-Jul-2020.) | ||||||||||||||||||||||
⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → 𝜓) | ||||||||||||||||||||||||
Theorem | exlimimd 33320* | Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020.) | ||||||||||||||||||||||
⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → 𝜒) | ||||||||||||||||||||||||
Theorem | exlimimdd 33321 | Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020.) | ||||||||||||||||||||||
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → 𝜒) | ||||||||||||||||||||||||
Theorem | exellim 33322* | Closed form of exellimddv 33323. See also exlimim 33319 for a more general theorem. (Contributed by ML, 17-Jul-2020.) | ||||||||||||||||||||||
⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) → 𝜑) | ||||||||||||||||||||||||
Theorem | exellimddv 33323* | Eliminate an antecedent when the antecedent is elementhood, deduction version. See exellim 33322 for the closed form, which requires the use of a universal quantifier. (Contributed by ML, 17-Jul-2020.) | ||||||||||||||||||||||
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → 𝜓) | ||||||||||||||||||||||||
Theorem | topdifinfindis 33324* | Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is the trivial topology when 𝐴 is finite. (Contributed by ML, 14-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} ⇒ ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) | ||||||||||||||||||||||||
Theorem | topdifinffinlem 33325* | This is the core of the proof of topdifinffin 33326, but to avoid the distinct variables on the definition, we need to split this proof into two. (Contributed by ML, 17-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} ⇒ ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) | ||||||||||||||||||||||||
Theorem | topdifinffin 33326* | Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is a topology only if 𝐴 is finite. (Contributed by ML, 17-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} ⇒ ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) | ||||||||||||||||||||||||
Theorem | topdifinf 33327* | Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is a topology if and only if 𝐴 is finite, in which case it is the trivial topology. (Contributed by ML, 17-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} ⇒ ⊢ ((𝑇 ∈ (TopOn‘𝐴) ↔ 𝐴 ∈ Fin) ∧ (𝑇 ∈ (TopOn‘𝐴) → 𝑇 = {∅, 𝐴})) | ||||||||||||||||||||||||
Theorem | topdifinfeq 33328* | Two different ways of defining the collection from Exercise 3 of [Munkres] p. 83. (Contributed by ML, 18-Jul-2020.) | ||||||||||||||||||||||
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ ((𝐴 ∖ 𝑥) = ∅ ∨ (𝐴 ∖ 𝑥) = 𝐴))} = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | ||||||||||||||||||||||||
Theorem | icorempt2 33329* | Closed-below, open-above intervals of reals. (Contributed by ML, 26-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐹 = ([,) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | ||||||||||||||||||||||||
Theorem | icoreresf 33330 | Closed-below, open-above intervals of reals map to subsets of reals. (Contributed by ML, 25-Jul-2020.) | ||||||||||||||||||||||
⊢ ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ | ||||||||||||||||||||||||
Theorem | icoreval 33331* | Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020.) | ||||||||||||||||||||||
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) | ||||||||||||||||||||||||
Theorem | icoreelrnab 33332* | Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐼 = ([,) “ (ℝ × ℝ)) ⇒ ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) | ||||||||||||||||||||||||
Theorem | isbasisrelowllem1 33333* | Lemma for isbasisrelowl 33336. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐼 = ([,) “ (ℝ × ℝ)) ⇒ ⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑)) → (𝑥 ∩ 𝑦) ∈ 𝐼) | ||||||||||||||||||||||||
Theorem | isbasisrelowllem2 33334* | Lemma for isbasisrelowl 33336. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐼 = ([,) “ (ℝ × ℝ)) ⇒ ⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (𝑥 ∩ 𝑦) ∈ 𝐼) | ||||||||||||||||||||||||
Theorem | icoreclin 33335* | The set of closed-below, open-above intervals of reals is closed under finite intersection. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐼 = ([,) “ (ℝ × ℝ)) ⇒ ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∩ 𝑦) ∈ 𝐼) | ||||||||||||||||||||||||
Theorem | isbasisrelowl 33336 | The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐼 = ([,) “ (ℝ × ℝ)) ⇒ ⊢ 𝐼 ∈ TopBases | ||||||||||||||||||||||||
Theorem | icoreunrn 33337 | The union of all closed-below, open-above intervals of reals is the set of reals. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐼 = ([,) “ (ℝ × ℝ)) ⇒ ⊢ ℝ = ∪ 𝐼 | ||||||||||||||||||||||||
Theorem | istoprelowl 33338 | The set of all closed-below, open-above intervals of reals generate a topology on the reals. (Contributed by ML, 27-Jul-2020.) | ||||||||||||||||||||||
⊢ 𝐼 = ([,) “ (ℝ × ℝ)) ⇒ ⊢ (topGen‘𝐼) ∈ (TopOn‘ℝ) | ||||||||||||||||||||||||
Theorem | icoreelrn 33339* | A class abstraction which is an element of the set of closed-below, open-above intervals of reals. (Contributed by ML, 1-Aug-2020.) | ||||||||||||||||||||||
⊢ 𝐼 = ([,) “ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ 𝐼) | ||||||||||||||||||||||||
Theorem | iooelexlt 33340* | An element of an open interval is not its smallest element. (Contributed by ML, 2-Aug-2020.) | ||||||||||||||||||||||
⊢ (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋) | ||||||||||||||||||||||||
Theorem | relowlssretop 33341 | The lower limit topology on the reals is finer than the standard topology. (Contributed by ML, 1-Aug-2020.) | ||||||||||||||||||||||
⊢ 𝐼 = ([,) “ (ℝ × ℝ)) ⇒ ⊢ (topGen‘ran (,)) ⊆ (topGen‘𝐼) | ||||||||||||||||||||||||
Theorem | relowlpssretop 33342 | The lower limit topology on the reals is strictly finer than the standard topology. (Contributed by ML, 2-Aug-2020.) | ||||||||||||||||||||||
⊢ 𝐼 = ([,) “ (ℝ × ℝ)) ⇒ ⊢ (topGen‘ran (,)) ⊊ (topGen‘𝐼) | ||||||||||||||||||||||||
Theorem | sucneqond 33343 | Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝜑 → 𝑋 = suc 𝑌) & ⊢ (𝜑 → 𝑌 ∈ On) ⇒ ⊢ (𝜑 → 𝑋 ≠ 𝑌) | ||||||||||||||||||||||||
Theorem | sucneqoni 33344 | Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) | ||||||||||||||||||||||
⊢ 𝑋 = suc 𝑌 & ⊢ 𝑌 ∈ On ⇒ ⊢ 𝑋 ≠ 𝑌 | ||||||||||||||||||||||||
Theorem | onsucuni3 33345 | If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.) | ||||||||||||||||||||||
⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc ∪ 𝐵) | ||||||||||||||||||||||||
Theorem | 1oequni2o 33346 | The ordinal number 1𝑜 is the predecessor of the ordinal number 2𝑜. (Contributed by ML, 19-Oct-2020.) | ||||||||||||||||||||||
⊢ 1𝑜 = ∪ 2𝑜 | ||||||||||||||||||||||||
Theorem | rdgsucuni 33347 | If an ordinal number has a predecessor, the value of the recursive definition generator at that number in terms of its predecessor. (Contributed by ML, 17-Oct-2020.) | ||||||||||||||||||||||
⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (rec(𝐹, 𝐼)‘𝐵) = (𝐹‘(rec(𝐹, 𝐼)‘∪ 𝐵))) | ||||||||||||||||||||||||
Theorem | rdgeqoa 33348 | If a recursive function with an initial value 𝐴 at step 𝑁 is equal to itself with an initial value 𝐵 at step 𝑀, then every finite number of successor steps will also be equal. (Contributed by ML, 21-Oct-2020.) | ||||||||||||||||||||||
⊢ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +𝑜 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +𝑜 𝑋)))) | ||||||||||||||||||||||||
Theorem | elxp8 33349 | Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp7 7245. (Contributed by ML, 19-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ((1st ‘𝐴) ∈ 𝐵 ∧ 𝐴 ∈ (V × 𝐶))) | ||||||||||||||||||||||||
Syntax | cfinxp 33350 | Extend the definition of a class to include Cartesian exponentiation. | ||||||||||||||||||||||
class (𝑈↑↑𝑁) | ||||||||||||||||||||||||
Definition | df-finxp 33351* |
Define Cartesian exponentiation on a class.
Note that this definition is limited to finite exponents, since it is defined using nested ordered pairs. If tuples of infinite length are needed, or if they might be needed in the future, use df-ixp 7951 or df-map 7901 instead. The main advantage of this definition is that it integrates better with functions and relations. For example if 𝑅 is a subset of (𝐴↑↑2𝑜), then df-br 4686 can be used on it, and df-fv 5934 can also be used, and so on. It's also worth keeping in mind that ((𝑈↑↑𝑀) × (𝑈↑↑𝑁)) is generally not equal to (𝑈↑↑(𝑀 +𝑜 𝑁)). This definition is technical. Use finxp1o 33359 and finxpsuc 33365 for a more standard recursive experience. (Contributed by ML, 16-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈𝑁, 𝑦〉)‘𝑁))} | ||||||||||||||||||||||||
Theorem | dffinxpf 33352* | This theorem is the same as the definition df-finxp 33351, except that the large function is replaced by a class variable for brevity. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) ⇒ ⊢ (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁))} | ||||||||||||||||||||||||
Theorem | finxpeq1 33353 | Equality theorem for Cartesian exponentiation. (Contributed by ML, 19-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝑈 = 𝑉 → (𝑈↑↑𝑁) = (𝑉↑↑𝑁)) | ||||||||||||||||||||||||
Theorem | finxpeq2 33354 | Equality theorem for Cartesian exponentiation. (Contributed by ML, 19-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝑀 = 𝑁 → (𝑈↑↑𝑀) = (𝑈↑↑𝑁)) | ||||||||||||||||||||||||
Theorem | csbfinxpg 33355* | Distribute proper substitution through Cartesian exponentiation. (Contributed by ML, 25-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑈↑↑𝑁) = (⦋𝐴 / 𝑥⦌𝑈↑↑⦋𝐴 / 𝑥⦌𝑁)) | ||||||||||||||||||||||||
Theorem | finxpreclem1 33356* | Lemma for ↑↑ recursion theorems. (Contributed by ML, 17-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝑋 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1𝑜, 𝑋〉)) | ||||||||||||||||||||||||
Theorem | finxpreclem2 33357* | Lemma for ↑↑ recursion theorems. (Contributed by ML, 17-Oct-2020.) | ||||||||||||||||||||||
⊢ ((𝑋 ∈ V ∧ ¬ 𝑋 ∈ 𝑈) → ¬ ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1𝑜, 𝑋〉)) | ||||||||||||||||||||||||
Theorem | finxp0 33358 | The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝑈↑↑∅) = ∅ | ||||||||||||||||||||||||
Theorem | finxp1o 33359 | The value of Cartesian exponentiation at one. (Contributed by ML, 17-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝑈↑↑1𝑜) = 𝑈 | ||||||||||||||||||||||||
Theorem | finxpreclem3 33360* | Lemma for ↑↑ recursion theorems. (Contributed by ML, 20-Oct-2020.) | ||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) ⇒ ⊢ (((𝑁 ∈ ω ∧ 2𝑜 ⊆ 𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 〈∪ 𝑁, (1st ‘𝑋)〉 = (𝐹‘〈𝑁, 𝑋〉)) | ||||||||||||||||||||||||
Theorem | finxpreclem4 33361* | Lemma for ↑↑ recursion theorems. (Contributed by ML, 23-Oct-2020.) | ||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) ⇒ ⊢ (((𝑁 ∈ ω ∧ 2𝑜 ⊆ 𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘∪ 𝑁)) | ||||||||||||||||||||||||
Theorem | finxpreclem5 33362* | Lemma for ↑↑ recursion theorems. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) ⇒ ⊢ ((𝑛 ∈ ω ∧ 1𝑜 ∈ 𝑛) → (¬ 𝑥 ∈ (V × 𝑈) → (𝐹‘〈𝑛, 𝑥〉) = 〈𝑛, 𝑥〉)) | ||||||||||||||||||||||||
Theorem | finxpreclem6 33363* | Lemma for ↑↑ recursion theorems. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) ⇒ ⊢ ((𝑁 ∈ ω ∧ 1𝑜 ∈ 𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)) | ||||||||||||||||||||||||
Theorem | finxpsuclem 33364* | Lemma for finxpsuc 33365. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) ⇒ ⊢ ((𝑁 ∈ ω ∧ 1𝑜 ⊆ 𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) | ||||||||||||||||||||||||
Theorem | finxpsuc 33365 | The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) | ||||||||||||||||||||||||
Theorem | finxp2o 33366 | The value of Cartesian exponentiation at two. (Contributed by ML, 19-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝑈↑↑2𝑜) = (𝑈 × 𝑈) | ||||||||||||||||||||||||
Theorem | finxp3o 33367 | The value of Cartesian exponentiation at three. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
⊢ (𝑈↑↑3𝑜) = ((𝑈 × 𝑈) × 𝑈) | ||||||||||||||||||||||||
Theorem | finxpnom 33368 | Cartesian exponentiation when the exponent is not a natural number defaults to the empty set. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
⊢ (¬ 𝑁 ∈ ω → (𝑈↑↑𝑁) = ∅) | ||||||||||||||||||||||||
Theorem | finxp00 33369 | Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.) | ||||||||||||||||||||||
⊢ (∅↑↑𝑁) = ∅ | ||||||||||||||||||||||||
Theorem | wl-section-prop 33370 |
Intuitionistic logic is now developed separately, so we need not first
focus on intuitionally valid axioms ax-1 6 and
ax-2 7
any longer.
Alternatively, I start from Jan Lukasiewicz's axiom system here, i.e. ax-mp 5, ax-luk1 33371, ax-luk2 33372 and ax-luk3 33373. I rather copy this system than use luk-1 1620 to luk-3 1622, since the latter are theorems, while we need axioms here. (Contributed by Wolf Lammen, 23-Feb-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||
Axiom | ax-luk1 33371 |
1 of 3 axioms for propositional calculus due to Lukasiewicz. Copy of
luk-1 1620 and imim1 83, but introduced as an axiom. It
focuses on a basic
property of a valid implication, namely that the consequent has to be true
whenever the antecedent is. So if 𝜑 and 𝜓 are somehow
parametrized expressions, then 𝜑 → 𝜓 states that 𝜑 strengthen
𝜓, in that 𝜑 holds only for a (often
proper) subset of those
parameters making 𝜓 true. We easily accept, that when
𝜓 is
stronger than 𝜒 and, at the same time 𝜑 is
stronger than
𝜓, then 𝜑 must be stronger than
𝜒.
This transitivity is
expressed in this axiom.
A particular result of this strengthening property comes into play if the antecedent holds unconditionally. Then the consequent must hold unconditionally as well. This specialization is the foundational idea behind logical conclusion. Such conclusion is best expressed in so-called immediate versions of this axiom like imim1i 63 or syl 17. Note that these forms are weaker replacements (i.e. just frequent specialization) of the closed form presented here, hence a mere convenience. We can identify in this axiom up to three antecedents, followed by a consequent. The number of antecedents is not really fixed; the fewer we are willing to "see", the more complex the consequent grows. On the other side, since 𝜒 is a variable capable of assuming an implication itself, we might find even more antecedents after some substitution of 𝜒. This shows that the ideas of antecedent and consequent in expressions like this depends on, and can adapt to, our current interpretation of the whole expression. In this axiom, up to two antecedents happen to be of complex nature themselves, i.e. are an embedded implication. Logically, this axiom is a compact notion of simpler expressions, which I will later coin implication chains. Herein all antecedents and the consequent appear as simple variables, or their negation. Any propositional expression is equivalent to a set of such chains. This axiom, for example, is dissected into following chains, from which it can be recovered losslessly: (𝜓 → (𝜒 → (𝜑 → 𝜒))); (¬ 𝜑 → (𝜒 → (𝜑 → 𝜒))); (𝜓 → (¬ 𝜓 → (𝜑 → 𝜒))); (¬ 𝜑 → (¬ 𝜓 → (𝜑 → 𝜒))). (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) | ||||||||||||||||||||||
⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | ||||||||||||||||||||||||
Axiom | ax-luk2 33372 |
2 of 3 axioms for propositional calculus due to Lukasiewicz. Copy of
luk-2 1621 or pm2.18 122, but introduced as an axiom. The core idea
behind
this axiom is, that if something can be implied from both an antecedent,
and separately from its negation, then the antecedent is irrelevant to the
consequent, and can safely be dropped. This is perhaps better seen from
the following slightly extended version (related to pm2.65 184):
((𝜑 → 𝜑) → ((¬ 𝜑 → 𝜑) → 𝜑)). (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) | ||||||||||||||||||||||
⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | ||||||||||||||||||||||||
Axiom | ax-luk3 33373 |
3 of 3 axioms for propositional calculus due to Lukasiewicz. Copy of
luk-3 1622 and pm2.24 121, but introduced as an axiom.
One might think that the similar pm2.21 120 (¬ 𝜑 → (𝜑 → 𝜓)) is
a valid replacement for this axiom. But this is not true, ax-3 8 is not
derivable from this modification.
This can be shown by designing carefully operators ¬ and → on a
finite set of primitive statements. In propositional logic such
statements are ⊤ and ⊥, but we can assume more and other
primitives in our universe of statements. So we denote our primitive
statements as phi0 , phi1 and phi2. The actual meaning of the statements
are not important in this context, it rather counts how they behave under
our operations ¬ and →, and which of them we assume to hold
unconditionally (phi1, phi2). For our disproving model, I give that
information in tabular form below. The interested reader may check per
hand, that all possible interpretations of ax-mp 5, ax-luk1 33371, ax-luk2 33372
and pm2.21 120 result in phi1 or phi2, meaning they always hold. But for
wl-ax3 33385 we can find a counter example resulting in phi0, not a statement
always true.
The verification of a particular set of axioms in a given model is tedious
and error prone, so I wrote a computer program, first checking this for
me, and second, hunting for a counter example. Here is the result, after
9165 fruitlessly computer generated models:
ax-3 fails for phi2, phi2 number of statements: 3 always true phi1 phi2 Negation is defined as ----------------------------------------------------------------------
Implication is defined as ----------------------------------------------------------------------
(Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) | ||||||||||||||||||||||
⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | ||||||||||||||||||||||||
Theorem | wl-section-boot 33374 | In this section, I provide the first steps needed for convenient proving. The presented theorems follow no common concept other than being useful in themselves, and apt to rederive ax-1 6, ax-2 7 and ax-3 8. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||
Theorem | wl-imim1i 33375 | Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Copy of imim1i 63 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) | ||||||||||||||||||||||
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) | ||||||||||||||||||||||||
Theorem | wl-syl 33376 | An inference version of the transitive laws for implication luk-1 1620. Copy of syl 17 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||||||||||||||||||||||||
Theorem | wl-syl5 33377 | A syllogism rule of inference. The first premise is used to replace the second antecedent of the second premise. Copy of syl5 34 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → (𝜓 → 𝜃)) ⇒ ⊢ (𝜒 → (𝜑 → 𝜃)) | ||||||||||||||||||||||||
Theorem | wl-pm2.18d 33378 | Deduction based on reductio ad absurdum. Copy of pm2.18d 124 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (𝜑 → (¬ 𝜓 → 𝜓)) ⇒ ⊢ (𝜑 → 𝜓) | ||||||||||||||||||||||||
Theorem | wl-con4i 33379 | Inference rule. Copy of con4i 113 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (¬ 𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜓 → 𝜑) | ||||||||||||||||||||||||
Theorem | wl-pm2.24i 33380 | Inference rule. Copy of pm2.24i 146 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ 𝜑 ⇒ ⊢ (¬ 𝜑 → 𝜓) | ||||||||||||||||||||||||
Theorem | wl-a1i 33381 | Inference rule. Copy of a1i 11 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ 𝜑 ⇒ ⊢ (𝜓 → 𝜑) | ||||||||||||||||||||||||
Theorem | wl-mpi 33382 | A nested modus ponens inference. Copy of mpi 20 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ 𝜓 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → 𝜒) | ||||||||||||||||||||||||
Theorem | wl-imim2i 33383 | Inference adding common antecedents in an implication. Copy of imim2i 16 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) | ||||||||||||||||||||||||
Theorem | wl-syl6 33384 | A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. Copy of syl6 35 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜒 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → 𝜃)) | ||||||||||||||||||||||||
Theorem | wl-ax3 33385 | ax-3 8 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) | ||||||||||||||||||||||||
Theorem | wl-ax1 33386 | ax-1 6 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (𝜑 → (𝜓 → 𝜑)) | ||||||||||||||||||||||||
Theorem | wl-pm2.27 33387 | This theorem, called "Assertion," can be thought of as closed form of modus ponens ax-mp 5. Theorem *2.27 of [WhiteheadRussell] p. 104. Copy of pm2.27 42 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | ||||||||||||||||||||||||
Theorem | wl-com12 33388 | Inference that swaps (commutes) antecedents in an implication. Copy of com12 32 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜓 → (𝜑 → 𝜒)) | ||||||||||||||||||||||||
Theorem | wl-pm2.21 33389 | From a wff and its negation, anything follows. Theorem *2.21 of [WhiteheadRussell] p. 104. Also called the Duns Scotus law. Copy of pm2.21 120 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | ||||||||||||||||||||||||
Theorem | wl-con1i 33390 | A contraposition inference. Copy of con1i 144 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (¬ 𝜑 → 𝜓) ⇒ ⊢ (¬ 𝜓 → 𝜑) | ||||||||||||||||||||||||
Theorem | wl-ja 33391 | Inference joining the antecedents of two premises. Copy of ja 173 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (¬ 𝜑 → 𝜒) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ ((𝜑 → 𝜓) → 𝜒) | ||||||||||||||||||||||||
Theorem | wl-imim2 33392 | A closed form of syllogism (see syl 17). Theorem *2.05 of [WhiteheadRussell] p. 100. Copy of imim2 58 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) | ||||||||||||||||||||||||
Theorem | wl-a1d 33393 | Deduction introducing an embedded antecedent. Copy of imim2 58 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜒 → 𝜓)) | ||||||||||||||||||||||||
Theorem | wl-ax2 33394 | ax-2 7 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||||||||||||||||||||||||
Theorem | wl-id 33395 | Principle of identity. Theorem *2.08 of [WhiteheadRussell] p. 101. Copy of id 22 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (𝜑 → 𝜑) | ||||||||||||||||||||||||
Theorem | wl-notnotr 33396 | Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102. In classical logic (our logic) this is always true. In intuitionistic logic this is not always true; in intuitionistic logic, when this is true for some 𝜑, then 𝜑 is stable. Copy of notnotr 125 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ (¬ ¬ 𝜑 → 𝜑) | ||||||||||||||||||||||||
Theorem | wl-pm2.04 33397 | Swap antecedents. Theorem *2.04 of [WhiteheadRussell] p. 100. This was the third axiom in Frege's logic system, specifically Proposition 8 of [Frege1879] p. 35. Copy of pm2.04 90 with a different proof. (Contributed by Wolf Lammen, 7-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | ||||||||||||||||||||||||
Theorem | wl-section-impchain 33398 |
An implication like (𝜓 → 𝜑) with one antecedent can easily be
extended by prepending more and more antecedents, as in
(𝜒
→ (𝜓 → 𝜑)) or (𝜃 → (𝜒 → (𝜓 → 𝜑))). I
call these expressions implication chains, and the number of antecedents
(number of nodes minus one) denotes their length. A given length often
marks just a required minimum value, since the consequent 𝜑 itself
may represent an implication, or even an implication chain, such hiding
part of the whole chain. As an extension, it is useful to consider a
single variable 𝜑 as a degenerate implication chain of
length zero.
Implication chains play a particular role in logic, as all propositional expressions turn out to be convertible to one or more implication chains, their nodes as simple as a variable, or its negation. So there is good reason to focus on implication chains as a sort of normalized expressions, and build some general theorems around them, with proofs using recursive patterns. This allows for theorems referring to longer and longer implication chains in an automated way. The theorem names in this section contain the text fragment 'impchain' to point out their relevance to implication chains, followed by a number indicating the (minimal) length of the longest chain involved. (Contributed by Wolf Lammen, 6-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||
Theorem | wl-impchain-mp-x 33399 | This series of theorems provide a means of exchanging the consequent of an implication chain via a simple implication. In the main part, the theorems ax-mp 5, syl 17, syl6 35, syl8 76 form the beginning of this series. These theorems are replicated here, but with proofs that aim at a recursive scheme, allowing to base a proof on that of the previous one in the series. (Contributed by Wolf Lammen, 17-Nov-2019.) | ||||||||||||||||||||||
⊢ ⊤ | ||||||||||||||||||||||||
Theorem | wl-impchain-mp-0 33400 |
This theorem is the start of a proof recursion scheme where we replace
the consequent of an implication chain. The number '0' in the theorem
name indicates that the modified chain has no antecedents.
This theorem is in fact a copy of ax-mp 5, and is repeated here to emphasize the recursion using similar theorem names. (Contributed by Wolf Lammen, 6-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||
⊢ 𝜓 & ⊢ (𝜓 → 𝜑) ⇒ ⊢ 𝜑 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |