HomeHome Metamath Proof Explorer
Theorem List (p. 325 of 429)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27903)
  Hilbert Space Explorer  Hilbert Space Explorer
(27904-29428)
  Users' Mathboxes  Users' Mathboxes
(29429-42879)
 

Theorem List for Metamath Proof Explorer - 32401-32500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrankpwg 32401 The rank of a power set. Closed form of rankpw 8744. (Contributed by Scott Fenton, 16-Jul-2015.)
(𝐴𝑉 → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
 
Theoremrank0 32402 The rank of the empty set is . (Contributed by Scott Fenton, 17-Jul-2015.)
(rank‘∅) = ∅
 
Theoremrankeq1o 32403 The only set with rank 1𝑜 is the singleton of the empty set. (Contributed by Scott Fenton, 17-Jul-2015.)
((rank‘𝐴) = 1𝑜𝐴 = {∅})
 
20.8.35  Hereditarily Finite Sets
 
Syntaxchf 32404 The constant Hf is a class.
class Hf
 
Definitiondf-hf 32405 Define the hereditarily finite sets. These are the finite sets whose elements are finite, and so forth. (Contributed by Scott Fenton, 9-Jul-2015.)
Hf = (𝑅1 “ ω)
 
Theoremelhf 32406* Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015.)
(𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
 
Theoremelhf2 32407 Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015.)
𝐴 ∈ V       (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)
 
Theoremelhf2g 32408 Hereditarily finiteness via rank. Closed form of elhf2 32407. (Contributed by Scott Fenton, 15-Jul-2015.)
(𝐴𝑉 → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω))
 
Theorem0hf 32409 The empty set is a hereditarily finite set. (Contributed by Scott Fenton, 9-Jul-2015.)
∅ ∈ Hf
 
Theoremhfun 32410 The union of two HF sets is an HF set. (Contributed by Scott Fenton, 15-Jul-2015.)
((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴𝐵) ∈ Hf )
 
Theoremhfsn 32411 The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015.)
(𝐴 ∈ Hf → {𝐴} ∈ Hf )
 
Theoremhfadj 32412 Adjoining one HF element to an HF set preserves HF status. (Contributed by Scott Fenton, 15-Jul-2015.)
((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 ∪ {𝐵}) ∈ Hf )
 
Theoremhfelhf 32413 Any member of an HF set is itself an HF set. (Contributed by Scott Fenton, 16-Jul-2015.)
((𝐴𝐵𝐵 ∈ Hf ) → 𝐴 ∈ Hf )
 
Theoremhftr 32414 The class of all hereditarily finite sets is transitive. (Contributed by Scott Fenton, 16-Jul-2015.)
Tr Hf
 
Theoremhfext 32415* Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015.)
((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥𝐴𝑥𝐵)))
 
Theoremhfuni 32416 The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
(𝐴 ∈ Hf → 𝐴 ∈ Hf )
 
Theoremhfpw 32417 The power class of an HF set is hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
(𝐴 ∈ Hf → 𝒫 𝐴 ∈ Hf )
 
Theoremhfninf 32418 ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
¬ ω ∈ Hf
 
20.9  Mathbox for Jeff Hankins
 
20.9.1  Miscellany
 
Theorema1i14 32419 Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.)
(𝜓 → (𝜒𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
 
Theorema1i24 32420 Add two antecedents to a wff. (Contributed by Jeff Hankins, 5-Aug-2009.)
(𝜑 → (𝜒𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
 
Theoremexp5d 32421 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(((𝜑𝜓) ∧ 𝜒) → ((𝜃𝜏) → 𝜂))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp5g 32422 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑𝜓) → (((𝜒𝜃) ∧ 𝜏) → 𝜂))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp5k 32423 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(𝜑 → (((𝜓 ∧ (𝜒𝜃)) ∧ 𝜏) → 𝜂))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp56 32424 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((((𝜑𝜓) ∧ 𝜒) ∧ (𝜃𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp58 32425 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(((𝜑𝜓) ∧ ((𝜒𝜃) ∧ 𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp510 32426 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑 ∧ (((𝜓𝜒) ∧ 𝜃) ∧ 𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp511 32427 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑 ∧ ((𝜓 ∧ (𝜒𝜃)) ∧ 𝜏)) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theoremexp512 32428 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
((𝜑 ∧ ((𝜓𝜒) ∧ (𝜃𝜏))) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
 
Theorem3com12d 32429 Commutation in consequent. Swap 1st and 2nd. (Contributed by Jeff Hankins, 17-Nov-2009.)
(𝜑 → (𝜓𝜒𝜃))       (𝜑 → (𝜒𝜓𝜃))
 
Theoremimp5p 32430 A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       (𝜑 → (𝜓 → ((𝜒𝜃𝜏) → 𝜂)))
 
Theoremimp5q 32431 A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       ((𝜑𝜓) → ((𝜒𝜃𝜏) → 𝜂))
 
Theoremecase13d 32432 Deduction for elimination by cases. (Contributed by Jeff Hankins, 18-Aug-2009.)
(𝜑 → ¬ 𝜒)    &   (𝜑 → ¬ 𝜃)    &   (𝜑 → (𝜒𝜓𝜃))       (𝜑𝜓)
 
Theoremsubtr 32433 Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝑌    &   𝑥𝑍    &   (𝑥 = 𝐴𝑋 = 𝑌)    &   (𝑥 = 𝐵𝑋 = 𝑍)       ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵𝑌 = 𝑍))
 
Theoremsubtr2 32434 Transitivity of implicit substitution into a wff. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝜓    &   𝑥𝜒    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵 → (𝜓𝜒)))
 
Theoremtrer 32435* A relation intersected with its converse is an equivalence relation if the relation is transitive. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
(∀𝑎𝑏𝑐((𝑎 𝑏𝑏 𝑐) → 𝑎 𝑐) → ( ) Er dom ( ))
 
Theoremelicc3 32436 An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
 
Theoremfinminlem 32437* A useful lemma about finite sets. If a property holds for a finite set, it holds for a minimal set. (Contributed by Jeff Hankins, 4-Dec-2009.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥 ∈ Fin 𝜑 → ∃𝑥(𝜑 ∧ ∀𝑦((𝑦𝑥𝜓) → 𝑥 = 𝑦)))
 
Theoremgtinf 32438* Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) (Revised by AV, 10-Oct-2021.)
(((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ inf(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧𝑆 𝑧 < 𝐴)
 
TheoremgtinfOLD 32439* Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) Obsolete version of gtinf 32438 as of 10-Oct-2021. (New usage is discouraged.) (Proof modification is discouraged.)
(((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧𝑆 𝑧 < 𝐴)
 
Theoremopnrebl 32440* A set is open in the standard topology of the reals precisely when every point can be enclosed in an open ball. (Contributed by Jeff Hankins, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
(𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+ ((𝑥𝑦)(,)(𝑥 + 𝑦)) ⊆ 𝐴))
 
Theoremopnrebl2 32441* A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
(𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
 
Theoremnn0prpwlem 32442* Lemma for nn0prpw 32443. Use strong induction to show that every positive integer has unique prime power divisors. (Contributed by Jeff Hankins, 28-Sep-2013.)
(𝐴 ∈ ℕ → ∀𝑘 ∈ ℕ (𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝𝑛) ∥ 𝑘 ↔ (𝑝𝑛) ∥ 𝐴)))
 
Theoremnn0prpw 32443* Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝𝑛) ∥ 𝐴 ↔ (𝑝𝑛) ∥ 𝐵)))
 
20.9.2  Basic topological facts
 
Theoremtopbnd 32444 Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))
 
Theoremopnbnd 32445 A set is open iff it is disjoint from its boundary. (Contributed by Jeff Hankins, 23-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐴 ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))
 
Theoremcldbnd 32446 A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))
 
Theoremntruni 32447* A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → 𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
 
Theoremclsun 32448 A pairwise union of closures is the closure of the union. (Contributed by Jeff Hankins, 31-Aug-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))
 
Theoremclsint2 32449* The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋) → ((cls‘𝐽)‘ 𝐶) ⊆ 𝑐𝐶 ((cls‘𝐽)‘𝑐))
 
Theoremopnregcld 32450* A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘((int‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑜𝐽 𝐴 = ((cls‘𝐽)‘𝑜)))
 
Theoremcldregopn 32451* A set if regularly open iff it is the interior of some closed set. (Contributed by Jeff Hankins, 27-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
 
Theoremneiin 32452 Two neighborhoods intersect to form a neighborhood of the intersection. (Contributed by Jeff Hankins, 31-Aug-2009.)
((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)))
 
Theoremhmeoclda 32453 Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
(((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐹𝑆) ∈ (Clsd‘𝐾))
 
Theoremhmeocldb 32454 Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.)
(((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽Homeo𝐾)) ∧ 𝑆 ∈ (Clsd‘𝐾)) → (𝐹𝑆) ∈ (Clsd‘𝐽))
 
20.9.3  Topology of the real numbers
 
TheoremivthALT 32455* An alternate proof of the Intermediate Value Theorem ivth 23269 using topology. (Contributed by Jeff Hankins, 17-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈)
 
20.9.4  Refinements
 
Syntaxcfne 32456 Extend class definition to include the "finer than" relation.
class Fne
 
Definitiondf-fne 32457* Define the fineness relation for covers. (Contributed by Jeff Hankins, 28-Sep-2009.)
Fne = {⟨𝑥, 𝑦⟩ ∣ ( 𝑥 = 𝑦 ∧ ∀𝑧𝑥 𝑧 (𝑦 ∩ 𝒫 𝑧))}
 
Theoremfnerel 32458 Fineness is a relation. (Contributed by Jeff Hankins, 28-Sep-2009.)
Rel Fne
 
Theoremisfne 32459* The predicate "𝐵 is finer than 𝐴." This property is, in a sense, the opposite of refinement, as refinement requires every element to be a subset of an element of the original and fineness requires that every element of the original have a subset in the finer cover containing every point. I do not know of a literature reference for this. (Contributed by Jeff Hankins, 28-Sep-2009.)
𝑋 = 𝐴    &   𝑌 = 𝐵       (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
 
Theoremisfne4 32460 The predicate "𝐵 is finer than 𝐴 " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015.)
𝑋 = 𝐴    &   𝑌 = 𝐵       (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
 
Theoremisfne4b 32461 A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
𝑋 = 𝐴    &   𝑌 = 𝐵       (𝐵𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))
 
Theoremisfne2 32462* The predicate "𝐵 is finer than 𝐴." (Contributed by Jeff Hankins, 28-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
𝑋 = 𝐴    &   𝑌 = 𝐵       (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
 
Theoremisfne3 32463* The predicate "𝐵 is finer than 𝐴." (Contributed by Jeff Hankins, 11-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
𝑋 = 𝐴    &   𝑌 = 𝐵       (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦(𝑦𝐵𝑥 = 𝑦))))
 
Theoremfnebas 32464 A finer cover covers the same set as the original. (Contributed by Jeff Hankins, 28-Sep-2009.)
𝑋 = 𝐴    &   𝑌 = 𝐵       (𝐴Fne𝐵𝑋 = 𝑌)
 
Theoremfnetg 32465 A finer cover generates a topology finer than the original set. (Contributed by Mario Carneiro, 11-Sep-2015.)
(𝐴Fne𝐵𝐴 ⊆ (topGen‘𝐵))
 
Theoremfnessex 32466* If 𝐵 is finer than 𝐴 and 𝑆 is an element of 𝐴, every point in 𝑆 is an element of a subset of 𝑆 which is in 𝐵. (Contributed by Jeff Hankins, 28-Sep-2009.)
((𝐴Fne𝐵𝑆𝐴𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
 
Theoremfneuni 32467* If 𝐵 is finer than 𝐴, every element of 𝐴 is a union of elements of 𝐵. (Contributed by Jeff Hankins, 11-Oct-2009.)
((𝐴Fne𝐵𝑆𝐴) → ∃𝑥(𝑥𝐵𝑆 = 𝑥))
 
Theoremfneint 32468* If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009.)
(𝐴Fne𝐵 {𝑥𝐵𝑃𝑥} ⊆ {𝑥𝐴𝑃𝑥})
 
Theoremfness 32469 A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009.)
𝑋 = 𝐴    &   𝑌 = 𝐵       ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Fne𝐵)
 
Theoremfneref 32470 Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009.)
(𝐴𝑉𝐴Fne𝐴)
 
Theoremfnetr 32471 Transitivity of the fineness relation. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
((𝐴Fne𝐵𝐵Fne𝐶) → 𝐴Fne𝐶)
 
Theoremfneval 32472 Two covers are finer than each other iff they are both bases for the same topology. (Contributed by Mario Carneiro, 11-Sep-2015.)
= (Fne ∩ Fne)       ((𝐴𝑉𝐵𝑊) → (𝐴 𝐵 ↔ (topGen‘𝐴) = (topGen‘𝐵)))
 
Theoremfneer 32473 Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
= (Fne ∩ Fne)        Er V
 
Theoremtopfne 32474 Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009.)
𝑋 = 𝐽    &   𝑌 = 𝐾       ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽𝐾𝐽Fne𝐾))
 
Theoremtopfneec 32475 A cover is equivalent to a topology iff it is a base for that topology. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
= (Fne ∩ Fne)       (𝐽 ∈ Top → (𝐴 ∈ [𝐽] ↔ (topGen‘𝐴) = 𝐽))
 
Theoremtopfneec2 32476 A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009.)
= (Fne ∩ Fne)       ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] = [𝐾] 𝐽 = 𝐾))
 
Theoremfnessref 32477* A cover is finer iff it has a subcover which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
𝑋 = 𝐴    &   𝑌 = 𝐵       (𝑋 = 𝑌 → (𝐴Fne𝐵 ↔ ∃𝑐(𝑐𝐵 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
 
Theoremrefssfne 32478* A cover is a refinement iff it is a subcover of something which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
𝑋 = 𝐴    &   𝑌 = 𝐵       (𝑋 = 𝑌 → (𝐵Ref𝐴 ↔ ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
 
20.9.5  Neighborhood bases determine topologies
 
Theoremneibastop1 32479* A collection of neighborhood bases determines a topology. Part of Theorem 4.5 of Stephen Willard's General Topology. (Contributed by Jeff Hankins, 8-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
(𝜑𝑋𝑉)    &   (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)    &   𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}       (𝜑𝐽 ∈ (TopOn‘𝑋))
 
Theoremneibastop2lem 32480* Lemma for neibastop2 32481. (Contributed by Jeff Hankins, 12-Sep-2009.)
(𝜑𝑋𝑉)    &   (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)    &   𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)    &   (𝜑𝑃𝑋)    &   (𝜑𝑁𝑋)    &   (𝜑𝑈 ∈ (𝐹𝑃))    &   (𝜑𝑈𝑁)    &   𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)    &   𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}       (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
 
Theoremneibastop2 32481* In the topology generated by a neighborhood base, a set is a neighborhood of a point iff it contains a subset in the base. (Contributed by Jeff Hankins, 9-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
(𝜑𝑋𝑉)    &   (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)    &   𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)       ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
 
Theoremneibastop3 32482* The topology generated by a neighborhood base is unique. (Contributed by Jeff Hankins, 16-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
(𝜑𝑋𝑉)    &   (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)    &   𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)    &   ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)       (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑥𝑋 ((nei‘𝑗)‘{𝑥}) = {𝑛 ∈ 𝒫 𝑋 ∣ ((𝐹𝑥) ∩ 𝒫 𝑛) ≠ ∅})
 
20.9.6  Lattice structure of topologies
 
Theoremtopmtcl 32483 The meet of a collection of topologies on 𝑋 is again a topology on 𝑋. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋))
 
Theoremtopmeet 32484* Two equivalent formulations of the meet of a collection of topologies. (Contributed by Jeff Hankins, 4-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
 
Theoremtopjoin 32485* Two equivalent formulations of the join of a collection of topologies. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
 
Theoremfnemeet1 32486* The meet of a collection of equivalence classes of covers with respect to fineness. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝐴)
 
Theoremfnemeet2 32487* The meet of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)))
 
Theoremfnejoin1 32488* Join of equivalence classes under the fineness relation-part one. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴Fneif(𝑆 = ∅, {𝑋}, 𝑆))
 
Theoremfnejoin2 32489* Join of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)))
 
20.9.7  Filter bases
 
Theoremfgmin 32490 Minimality property of a generated filter: every filter that contains 𝐵 contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 ↔ (𝑋filGen𝐵) ⊆ 𝐹))
 
Theoremneifg 32491* The neighborhood filter of a nonempty set is generated by its open supersets. See comments for opnfbas 21693. (Contributed by Jeff Hankins, 3-Sep-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
 
20.9.8  Directed sets, nets
 
Theoremtailfval 32492* The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
𝑋 = dom 𝐷       (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
 
Theoremtailval 32493 The tail of an element in a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
𝑋 = dom 𝐷       ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴}))
 
Theoremeltail 32494 An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
𝑋 = dom 𝐷       ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵))
 
Theoremtailf 32495 The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
𝑋 = dom 𝐷       (𝐷 ∈ DirRel → (tail‘𝐷):𝑋⟶𝒫 𝑋)
 
Theoremtailini 32496 A tail contains its initial element. (Contributed by Jeff Hankins, 25-Nov-2009.)
𝑋 = dom 𝐷       ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → 𝐴 ∈ ((tail‘𝐷)‘𝐴))
 
Theoremtailfb 32497 The collection of tails of a directed set is a filter base. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
𝑋 = dom 𝐷       ((𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅) → ran (tail‘𝐷) ∈ (fBas‘𝑋))
 
Theoremfilnetlem1 32498* Lemma for filnet 32502. Change variables. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)    &   𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}    &   𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝐷𝐵 ↔ ((𝐴𝐻𝐵𝐻) ∧ (1st𝐵) ⊆ (1st𝐴)))
 
Theoremfilnetlem2 32499* Lemma for filnet 32502. The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)    &   𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}       (( I ↾ 𝐻) ⊆ 𝐷𝐷 ⊆ (𝐻 × 𝐻))
 
Theoremfilnetlem3 32500* Lemma for filnet 32502. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)    &   𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}       (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
  Copyright terms: Public domain < Previous  Next >