![]() |
Metamath
Proof Explorer Theorem List (p. 316 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cmpps 31501 | The set of provable pre-statements. |
class mPPSt | ||
Syntax | cmthm 31502 | The set of theorems. |
class mThm | ||
Definition | df-mcn 31503 | Define the set of constants in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mCN = Slot 1 | ||
Definition | df-mvar 31504 | Define the set of variables in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVR = Slot 2 | ||
Definition | df-mty 31505 | Define the type function in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mType = Slot 3 | ||
Definition | df-mtc 31506 | Define the set of typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mTC = Slot 4 | ||
Definition | df-mmax 31507 | Define the set of axioms in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mAx = Slot 5 | ||
Definition | df-mvt 31508 | Define the set of variable typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | ||
Definition | df-mrex 31509 | Define the set of "raw expressions", which are expressions without a typecode attached. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) | ||
Definition | df-mex 31510 | Define the set of expressions, which are strings of constants and variables headed by a typecode constant. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | ||
Definition | df-mdv 31511 | Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | ||
Definition | df-mvrs 31512* | Define the set of variables in an expression. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) | ||
Definition | df-mrsub 31513* | Define a substitution of raw expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) | ||
Definition | df-msub 31514* | Define a substitution of expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉))) | ||
Definition | df-mvh 31515* | Define the mapping from variables to their variable hypothesis. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉)) | ||
Definition | df-mpst 31516* | Define the set of all pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡))) | ||
Definition | df-msr 31517* | Define the reduct of a pre-statement. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ ⦋(2nd ‘(1st ‘𝑠)) / ℎ⦌⦋(2nd ‘𝑠) / 𝑎⦌〈((1st ‘(1st ‘𝑠)) ∩ ⦋∪ ((mVars‘𝑡) “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉)) | ||
Definition | df-msta 31518 | Define the set of all statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | ||
Definition | df-mfs 31519* | Define the set of all formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} | ||
Definition | df-mcls 31520* | Define the closure of a set of statements relative to a set of disjointness constraints. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) | ||
Definition | df-mpps 31521* | Define the set of provable pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mPPSt = (𝑡 ∈ V ↦ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ))}) | ||
Definition | df-mthm 31522 | Define the set of theorems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) | ||
Theorem | mvtval 31523 | The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ 𝑉 = ran 𝑌 | ||
Theorem | mrexval 31524 | The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) | ||
Theorem | mexval 31525 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × 𝑅) | ||
Theorem | mexval2 31526 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a list of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × Word (𝐶 ∪ 𝑉)) | ||
Theorem | mdvval 31527 | The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of dv conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐷 = (mDV‘𝑇) ⇒ ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) | ||
Theorem | mvrsval 31528 | The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) | ||
Theorem | mvrsfpw 31529 | The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) ∈ (𝒫 𝑉 ∩ Fin)) | ||
Theorem | mrsubffval 31530* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) | ||
Theorem | mrsubfval 31531* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) | ||
Theorem | mrsubval 31532* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → ((𝑆‘𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) | ||
Theorem | mrsubcv 31533 | The value of a substituted singleton. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑆‘𝐹)‘〈“𝑋”〉) = if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)) | ||
Theorem | mrsubvr 31534 | The value of a substituted variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴) → ((𝑆‘𝐹)‘〈“𝑋”〉) = (𝐹‘𝑋)) | ||
Theorem | mrsubff 31535 | A substitution is a function from 𝑅 to 𝑅. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑𝑚 𝑅)) | ||
Theorem | mrsubrn 31536 | Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑𝑚 𝑉)) | ||
Theorem | mrsubff1 31537 | When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑𝑚 𝑉)):(𝑅 ↑𝑚 𝑉)–1-1→(𝑅 ↑𝑚 𝑅)) | ||
Theorem | mrsubff1o 31538 | When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑𝑚 𝑉)):(𝑅 ↑𝑚 𝑉)–1-1-onto→ran 𝑆) | ||
Theorem | mrsub0 31539 | The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) | ||
Theorem | mrsubf 31540 | A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝑅⟶𝑅) | ||
Theorem | mrsubccat 31541 | Substitution distributes over concatenation. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌))) | ||
Theorem | mrsubcn 31542 | A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) | ||
Theorem | elmrsubrn 31543* | Characterization of the substitutions as functions from expressions to expressions that distribute under concatenation and map constants to themselves. (The constant part uses (𝐶 ∖ 𝑉) because we don't know that 𝐶 and 𝑉 are disjoint until we get to ismfs 31572.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))))) | ||
Theorem | mrsubco 31544 | The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺) ∈ ran 𝑆) | ||
Theorem | mrsubvrs 31545* | The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝑅) → (ran (𝐹‘𝑋) ∩ 𝑉) = ∪ 𝑥 ∈ (ran 𝑋 ∩ 𝑉)(ran (𝐹‘〈“𝑥”〉) ∩ 𝑉)) | ||
Theorem | msubffval 31546* | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑓)‘(2nd ‘𝑒))〉))) | ||
Theorem | msubfval 31547* | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) | ||
Theorem | msubval 31548 | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) | ||
Theorem | msubrsub 31549 | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (2nd ‘((𝑆‘𝐹)‘𝑋)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) | ||
Theorem | msubty 31550 | The type of a substituted expression is the same as the original type. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (1st ‘((𝑆‘𝐹)‘𝑋)) = (1st ‘𝑋)) | ||
Theorem | elmsubrn 31551* | Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) | ||
Theorem | msubrn 31552 | Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑𝑚 𝑉)) | ||
Theorem | msubff 31553 | A substitution is a function from 𝐸 to 𝐸. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑𝑚 𝐸)) | ||
Theorem | msubco 31554 | The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺) ∈ ran 𝑆) | ||
Theorem | msubf 31555 | A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝐸⟶𝐸) | ||
Theorem | mvhfval 31556* | Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) | ||
Theorem | mvhval 31557 | Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) | ||
Theorem | mpstval 31558* | A pre-statement is an ordered triple, whose first member is a symmetric set of dv conditions, whose second member is a finite set of expressions, and whose third member is an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑃 = (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) | ||
Theorem | elmpst 31559 | Property of being a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ↔ ((𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷) ∧ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ 𝐸)) | ||
Theorem | msrfval 31560* | Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ 𝑅 = (𝑠 ∈ 𝑃 ↦ ⦋(2nd ‘(1st ‘𝑠)) / ℎ⦌⦋(2nd ‘𝑠) / 𝑎⦌〈((1st ‘(1st ‘𝑠)) ∩ ⦋∪ (𝑉 “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉) | ||
Theorem | msrval 31561 | Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝑅‘〈𝐷, 𝐻, 𝐴〉) = 〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) | ||
Theorem | mpstssv 31562 | A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑃 ⊆ ((V × V) × V) | ||
Theorem | mpst123 31563 | Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) | ||
Theorem | mpstrcl 31564 | The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) | ||
Theorem | msrf 31565 | The reduct of a pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ 𝑅:𝑃⟶𝑃 | ||
Theorem | msrrcl 31566 | If 𝑋 and 𝑌 have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) | ||
Theorem | mstaval 31567 | Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ 𝑆 = ran 𝑅 | ||
Theorem | msrid 31568 | The reduct of a statement is itself. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑆 → (𝑅‘𝑋) = 𝑋) | ||
Theorem | msrfo 31569 | The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑅:𝑃–onto→𝑆 | ||
Theorem | mstapst 31570 | A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ 𝑆 ⊆ 𝑃 | ||
Theorem | elmsta 31571 | Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 ↔ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍))) | ||
Theorem | ismfs 31572* | A formal system is a tuple 〈mCN, mVR, mType, mVT, mTC, mAx〉 such that: mCN and mVR are disjoint; mType is a function from mVR to mVT; mVT is a subset of mTC; mAx is a set of statements; and for each variable typecode, there are infinitely many variables of that type. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) & ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑇 ∈ mFS ↔ (((𝐶 ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) | ||
Theorem | mfsdisj 31573 | The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) | ||
Theorem | mtyf2 31574 | The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐾) | ||
Theorem | mtyf 31575 | The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) | ||
Theorem | mvtss 31576 | The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐹 ⊆ 𝐾) | ||
Theorem | maxsta 31577 | An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) | ||
Theorem | mvtinf 31578 | Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ ((𝑇 ∈ mFS ∧ 𝑋 ∈ 𝐹) → ¬ (◡𝑌 “ {𝑋}) ∈ Fin) | ||
Theorem | msubff1 31579 | When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑𝑚 𝑉)):(𝑅 ↑𝑚 𝑉)–1-1→(𝐸 ↑𝑚 𝐸)) | ||
Theorem | msubff1o 31580 | When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑𝑚 𝑉)):(𝑅 ↑𝑚 𝑉)–1-1-onto→ran 𝑆) | ||
Theorem | mvhf 31581 | The function mapping variables to variable expressions is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) | ||
Theorem | mvhf1 31582 | The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) | ||
Theorem | msubvrs 31583* | The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝐸) → (𝑉‘(𝐹‘𝑋)) = ∪ 𝑥 ∈ (𝑉‘𝑋)(𝑉‘(𝐹‘(𝐻‘𝑥)))) | ||
Theorem | mclsrcl 31584 | Reverse closure for the closure function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾 ⊆ 𝐷 ∧ 𝐵 ⊆ 𝐸)) | ||
Theorem | mclsssvlem 31585* | Lemma for mclsssv 31587. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) ⇒ ⊢ (𝜑 → ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝐸) | ||
Theorem | mclsval 31586* | The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) | ||
Theorem | mclsssv 31587 | The closure of a set of expressions is a set of expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝐸) | ||
Theorem | ssmclslem 31588 | Lemma for ssmcls 31590. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐾𝐶𝐵)) | ||
Theorem | vhmcls 31589 | All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) | ||
Theorem | ssmcls 31590 | The original expressions are also in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) ⇒ ⊢ (𝜑 → 𝐵 ⊆ (𝐾𝐶𝐵)) | ||
Theorem | ss2mcls 31591 | The closure is monotonic under subsets of the original set of expressions and the set of disjoint variable conditions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ (𝜑 → 𝑋 ⊆ 𝐾) & ⊢ (𝜑 → 𝑌 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐶𝑌) ⊆ (𝐾𝐶𝐵)) | ||
Theorem | mclsax 31592* | The closure is closed under axiom application. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐿) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) ⇒ ⊢ (𝜑 → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) | ||
Theorem | mclsind 31593* | Induction theorem for closure: any other set 𝑄 closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 𝐵 ⊆ 𝑄) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐻‘𝑣) ∈ 𝑄) & ⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑄) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄) | ||
Theorem | mppspstlem 31594* | Lemma for mppspst 31597. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} ⊆ 𝑃 | ||
Theorem | mppsval 31595* | Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ 𝐽 = {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} | ||
Theorem | elmpps 31596 | Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝐽 ↔ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐴 ∈ (𝐷𝐶𝐻))) | ||
Theorem | mppspst 31597 | A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) ⇒ ⊢ 𝐽 ⊆ 𝑃 | ||
Theorem | mthmval 31598 | A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) | ||
Theorem | elmthm 31599* | A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) | ||
Theorem | mthmi 31600 | A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |