![]() |
Metamath
Proof Explorer Theorem List (p. 305 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | measxun2 30401 | The measure the union of two complementary sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐴) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) | ||
Theorem | measun 30402 | The measure the union of two disjoint sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | ||
Theorem | measvunilem 30403* | Lemma for measvuni 30405. (Contributed by Thierry Arnoux, 7-Feb-2017.) (Revised by Thierry Arnoux, 19-Feb-2017.) (Revised by Thierry Arnoux, 6-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑆 ∖ {∅}) ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) | ||
Theorem | measvunilem0 30404* | Lemma for measvuni 30405. (Contributed by Thierry Arnoux, 6-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) | ||
Theorem | measvuni 30405* | The measure of a countable disjoint union is the sum of the measures. This theorem uses a collection rather than a set of subsets of 𝑆. (Contributed by Thierry Arnoux, 7-Mar-2017.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) | ||
Theorem | measssd 30406 | A measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) | ||
Theorem | measunl 30407 | A measure is sub-additive with respect to union. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | ||
Theorem | measiuns 30408* | The measure of the union of a collection of sets, expressed as the sum of a disjoint set. This is used as a lemma for both measiun 30409 and meascnbl 30410. (Contributed by Thierry Arnoux, 22-Jan-2017.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.) |
⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼))) & ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 𝐴) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) | ||
Theorem | measiun 30409* | A measure is sub-additive. (Contributed by Thierry Arnoux, 30-Dec-2016.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.) |
⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) | ||
Theorem | meascnbl 30410* | A measure is continuous from below. Cf. volsup 23370. (Contributed by Thierry Arnoux, 18-Jan-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.) |
⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ⇒ ⊢ (𝜑 → (𝑀 ∘ 𝐹)(⇝𝑡‘𝐽)(𝑀‘∪ ran 𝐹)) | ||
Theorem | measinblem 30411* | Lemma for measinb 30412. (Contributed by Thierry Arnoux, 2-Jun-2017.) |
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝐵 ∈ 𝒫 𝑆) ∧ (𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥)) → (𝑀‘(∪ 𝐵 ∩ 𝐴)) = Σ*𝑥 ∈ 𝐵(𝑀‘(𝑥 ∩ 𝐴))) | ||
Theorem | measinb 30412* | Building a measure restricted to the intersection with a given set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘𝑆)) | ||
Theorem | measres 30413 | Building a measure restricted to a smaller sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran sigAlgebra ∧ 𝑇 ⊆ 𝑆) → (𝑀 ↾ 𝑇) ∈ (measures‘𝑇)) | ||
Theorem | measinb2 30414* | Building a measure restricted to the intersection with a given set. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ (𝑆 ∩ 𝒫 𝐴) ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘(𝑆 ∩ 𝒫 𝐴))) | ||
Theorem | measdivcstOLD 30415* | Division of a measure by a positive constant is a measure. (Contributed by Thierry Arnoux, 25-Dec-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆)) | ||
Theorem | measdivcst 30416 | Division of a measure by a positive constant is a measure. (Contributed by Thierry Arnoux, 25-Dec-2016.) (Revised by Thierry Arnoux, 30-Jan-2017.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀∘𝑓/𝑐 /𝑒 𝐴) ∈ (measures‘𝑆)) | ||
Theorem | cntmeas 30417 | The Counting measure is a measure on any sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ (𝑆 ∈ ∪ ran sigAlgebra → (# ↾ 𝑆) ∈ (measures‘𝑆)) | ||
Theorem | pwcntmeas 30418 | The counting measure is a measure on any power set. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
⊢ (𝑂 ∈ 𝑉 → (# ↾ 𝒫 𝑂) ∈ (measures‘𝒫 𝑂)) | ||
Theorem | cntnevol 30419 | Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.) |
⊢ (# ↾ 𝒫 𝑂) ≠ vol | ||
Theorem | voliune 30420 | The Lebesgue measure function is countably additive. This formulation on the extended reals, allows for +∞ for the measure of any set in the sum. Cf. ovoliun 23319 and voliun 23368. (Contributed by Thierry Arnoux, 16-Oct-2017.) |
⊢ ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘∪ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴)) | ||
Theorem | volfiniune 30421* | The Lebesgue measure function is countably additive. This theorem is to volfiniun 23361 what voliune 30420 is to voliun 23368. (Contributed by Thierry Arnoux, 16-Oct-2017.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑛 ∈ 𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛 ∈ 𝐴 𝐵) → (vol‘∪ 𝑛 ∈ 𝐴 𝐵) = Σ*𝑛 ∈ 𝐴(vol‘𝐵)) | ||
Theorem | volmeas 30422 | The Lebesgue measure is a measure. (Contributed by Thierry Arnoux, 16-Oct-2017.) |
⊢ vol ∈ (measures‘dom vol) | ||
Syntax | cdde 30423 | Extend class notation to include the Dirac delta measure. |
class δ | ||
Definition | df-dde 30424 | Define the Dirac delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
⊢ δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0)) | ||
Theorem | ddeval1 30425 | Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1) | ||
Theorem | ddeval0 30426 | Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
⊢ ((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0) | ||
Theorem | ddemeas 30427 | The Dirac delta measure is a measure. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
⊢ δ ∈ (measures‘𝒫 ℝ) | ||
Syntax | cae 30428 | Extend class notation to include the 'almost everywhere' relation. |
class a.e. | ||
Syntax | cfae 30429 | Extend class notation to include the 'almost everywhere' builder. |
class ~ a.e. | ||
Definition | df-ae 30430* | Define 'almost everywhere' with regard to a measure 𝑀. A property holds almost everywhere if the measure of the set where it does not hold has measure zero. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom 𝑚 ∖ 𝑎)) = 0} | ||
Theorem | relae 30431 | 'almost everywhere' is a relation. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ Rel a.e. | ||
Theorem | brae 30432 | 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ ((𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘(∪ dom 𝑀 ∖ 𝐴)) = 0)) | ||
Theorem | braew 30433* | 'almost everywhere' relation for a measure 𝑀 and a property 𝜑 (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ ∪ dom 𝑀 = 𝑂 ⇒ ⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0)) | ||
Theorem | truae 30434* | A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ ∪ dom 𝑀 = 𝑂 & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) | ||
Theorem | aean 30435* | A conjunction holds almost everywhere if and only if both its terms do. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
⊢ ∪ dom 𝑀 = 𝑂 ⇒ ⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥 ∈ 𝑂 ∣ (𝜑 ∧ 𝜓)}a.e.𝑀 ↔ ({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ∧ {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀))) | ||
Definition | df-fae 30436* | Define a builder for an 'almost everywhere' relation between functions, from relations between function values. In this definition, the range of 𝑓 and 𝑔 is enforced in order to ensure the resulting relation is a set. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ ~ a.e. = (𝑟 ∈ V, 𝑚 ∈ ∪ ran measures ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑟 ↑𝑚 ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑𝑚 ∪ dom 𝑚)) ∧ {𝑥 ∈ ∪ dom 𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚)}) | ||
Theorem | faeval 30437* | Value of the 'almost everywhere' relation for a given relation and measure. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (𝑅~ a.e.𝑀) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑𝑚 ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑𝑚 ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}) | ||
Theorem | relfae 30438 | The 'almost everywhere' builder for functions produces relations. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → Rel (𝑅~ a.e.𝑀)) | ||
Theorem | brfae 30439* | 'almost everywhere' relation for two functions 𝐹 and 𝐺 with regard to the measure 𝑀. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ dom 𝑅 = 𝐷 & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐹 ∈ (𝐷 ↑𝑚 ∪ dom 𝑀)) & ⊢ (𝜑 → 𝐺 ∈ (𝐷 ↑𝑚 ∪ dom 𝑀)) ⇒ ⊢ (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺 ↔ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝐹‘𝑥)𝑅(𝐺‘𝑥)}a.e.𝑀)) | ||
Syntax | cmbfm 30440 | Extend class notation with the measurable functions builder. |
class MblFnM | ||
Definition | df-mbfm 30441* |
Define the measurable function builder, which generates the set of
measurable functions from a measurable space to another one. Here, the
measurable spaces are given using their sigma-algebras 𝑠 and
𝑡,
and the spaces themselves are recovered by ∪ 𝑠 and ∪ 𝑡.
Note the similarities between the definition of measurable functions in measure theory, and of continuous functions in topology. This is the definition for the generic measure theory. For the specific case of functions from ℝ to ℂ, see df-mbf 23433. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
⊢ MblFnM = (𝑠 ∈ ∪ ran sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∣ ∀𝑥 ∈ 𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) | ||
Theorem | ismbfm 30442* | The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 23442. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) | ||
Theorem | elunirnmbfm 30443* | The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) | ||
Theorem | mbfmfun 30444 | A measurable function is a function. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
Theorem | mbfmf 30445 | A measurable function as a function with domain and codomain. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) ⇒ ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) | ||
Theorem | isanmbfm 30446 | The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) | ||
Theorem | mbfmcnvima 30447 | The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ 𝑆) | ||
Theorem | mbfmbfm 30448 | A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) | ||
Theorem | mbfmcst 30449* | A constant function is measurable. Cf. mbfconst 23447. (Contributed by Thierry Arnoux, 26-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ∪ 𝑆 ↦ 𝐴)) & ⊢ (𝜑 → 𝐴 ∈ ∪ 𝑇) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | ||
Theorem | 1stmbfm 30450 | The first projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) ⇒ ⊢ (𝜑 → (1st ↾ (∪ 𝑆 × ∪ 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑆)) | ||
Theorem | 2ndmbfm 30451 | The second projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) ⇒ ⊢ (𝜑 → (2nd ↾ (∪ 𝑆 × ∪ 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇)) | ||
Theorem | imambfm 30452* | If the sigma-algebra in the range of a given function is generated by a collection of basic sets 𝐾, then to check the measurability of that function, we need only consider inverse images of basic sets 𝑎. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
⊢ (𝜑 → 𝐾 ∈ V) & ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹:∪ 𝑆⟶∪ 𝑇 ∧ ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆))) | ||
Theorem | cnmbfm 30453 | A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.) |
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑆 = (sigaGen‘𝐽)) & ⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | ||
Theorem | mbfmco 30454 | The composition of two measurable functions is measurable. ( cf. cnmpt11 21514) (Contributed by Thierry Arnoux, 4-Jun-2017.) |
⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (𝑆MblFnM𝑇)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝑅MblFnM𝑇)) | ||
Theorem | mbfmco2 30455* | The pair building of two measurable functions is measurable. ( cf. cnmpt1t 21516). (Contributed by Thierry Arnoux, 6-Jun-2017.) |
⊢ (𝜑 → 𝑅 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐹 ∈ (𝑅MblFnM𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (𝑅MblFnM𝑇)) & ⊢ 𝐻 = (𝑥 ∈ ∪ 𝑅 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇))) | ||
Theorem | mbfmvolf 30456 | Measurable functions with respect to the Lebesgue measure are real-valued functions on the real numbers. (Contributed by Thierry Arnoux, 27-Mar-2017.) |
⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹:ℝ⟶ℝ) | ||
Theorem | elmbfmvol2 30457 | Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.) |
⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) | ||
Theorem | mbfmcnt 30458 | All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
⊢ (𝑂 ∈ 𝑉 → (𝒫 𝑂MblFnM𝔅ℝ) = (ℝ ↑𝑚 𝑂)) | ||
Theorem | br2base 30459* | The base set for the generator of the Borel sigma-algebra on (ℝ × ℝ) is indeed (ℝ × ℝ). (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ ∪ ran (𝑥 ∈ 𝔅ℝ, 𝑦 ∈ 𝔅ℝ ↦ (𝑥 × 𝑦)) = (ℝ × ℝ) | ||
Theorem | dya2ub 30460 | An upper bound for a dyadic number. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅) | ||
Theorem | sxbrsigalem0 30461* | The closed half-spaces of (ℝ × ℝ) cover (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.) |
⊢ ∪ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ) | ||
Theorem | sxbrsigalem3 30462* | The sigma-algebra generated by the closed half-spaces of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed sets of (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) | ||
Theorem | dya2iocival 30463* | The function 𝐼 returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl 23414. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) | ||
Theorem | dya2iocress 30464* | Dyadic intervals are subsets of ℝ. (Contributed by Thierry Arnoux, 18-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ⊆ ℝ) | ||
Theorem | dya2iocbrsiga 30465* | Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅ℝ) | ||
Theorem | dya2icobrsiga 30466* | Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 13-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ran 𝐼 ⊆ 𝔅ℝ | ||
Theorem | dya2icoseg 30467* | For any point and any closed-below, open-above interval of ℝ centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑁 = (⌊‘(1 − (2 logb 𝐷))) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ ((𝑋 − 𝐷)(,)(𝑋 + 𝐷)))) | ||
Theorem | dya2icoseg2 30468* | For any point and any open interval of ℝ containing that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 12-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋 ∈ 𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐸)) | ||
Theorem | dya2iocrfn 30469* | The function returning dyadic square covering for a given size has domain (ran 𝐼 × ran 𝐼). (Contributed by Thierry Arnoux, 19-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) | ||
Theorem | dya2iocct 30470* | The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ ran 𝑅 ≼ ω | ||
Theorem | dya2iocnrect 30471* | For any point of an open rectangle in (ℝ × ℝ), there is a closed-below open-above dyadic rational square which contains that point and is included in the rectangle. (Contributed by Thierry Arnoux, 12-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) & ⊢ 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ⇒ ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) | ||
Theorem | dya2iocnei 30472* | For any point of an open set of the usual topology on (ℝ × ℝ) there is a closed-below open-above dyadic rational square which contains that point and is entirely in the open set. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) | ||
Theorem | dya2iocuni 30473* | Every open set of (ℝ × ℝ) is a union of closed-below open-above dyadic rational rectangular subsets of (ℝ × ℝ). This union must be a countable union by dya2iocct 30470. (Contributed by Thierry Arnoux, 18-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅∪ 𝑐 = 𝐴) | ||
Theorem | dya2iocucvr 30474* | The dyadic rectangular set collection covers (ℝ × ℝ). (Contributed by Thierry Arnoux, 18-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ ∪ ran 𝑅 = (ℝ × ℝ) | ||
Theorem | sxbrsigalem1 30475* | The Borel algebra on (ℝ × ℝ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). This is a step of the proof of Proposition 1.1.5 of [Cohn] p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅) | ||
Theorem | sxbrsigalem2 30476* | The sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed half-spaces of (ℝ × ℝ). The proof goes by noting the fact that the dyadic rectangles are intersections of a 'vertical band' and an 'horizontal band', which themselves are differences of closed half-spaces. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) | ||
Theorem | sxbrsigalem4 30477* | The Borel algebra on (ℝ × ℝ) is generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). Proposition 1.1.5 of [Cohn] p. 4 . Note that the interval used in this formalization are closed-below, open-above instead of open-below, closed-above in the proof as they are ultimately generated by the floor function. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅) | ||
Theorem | sxbrsigalem5 30478* | First direction for sxbrsiga 30480. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) & ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) | ||
Theorem | sxbrsigalem6 30479 | First direction for sxbrsiga 30480, same as sxbrsigalem6, dealing with the antecedents. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) | ||
Theorem | sxbrsiga 30480 | The product sigma-algebra (𝔅ℝ ×s 𝔅ℝ) is the Borel algebra on (ℝ × ℝ) See example 5.1.1 of [Cohn] p. 143 . (Contributed by Thierry Arnoux, 10-Oct-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘(𝐽 ×t 𝐽)) | ||
In this section, we define a function toOMeas which constructs an outer measure, from a pre-measure 𝑅. An explicit generic definition of an outer measure is not given. It consists of the three following statements: - the outer measure of an empty set is zero (oms0 30487) - it is monotone (omsmon 30488) - it is countably sub-additive (omssubadd 30490) See Definition 1.11.1 of [Bogachev] p. 41. | ||
Syntax | coms 30481 | Class declaration for the outer measure construction function. |
class toOMeas | ||
Definition | df-oms 30482* | Define a function constructing an outer measure. See omsval 30483 for its value. Definition 1.5 of [Bogachev] p. 16. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 ∪ dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑟‘𝑦)), (0[,]+∞), < ))) | ||
Theorem | omsval 30483* | Value of the function mapping a content function to the corresponding outer measure. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ))) | ||
Theorem | omsfval 30484* | Value of the outer measure evaluated for a given set 𝐴. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ⊆ ∪ 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < )) | ||
Theorem | omscl 30485* | A closure lemma for the constructed outer measure. (Contributed by Thierry Arnoux, 17-Sep-2019.) |
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) | ||
Theorem | omsf 30486 | A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) | ||
Theorem | oms0 30487 | A constructed outer measure evaluates to zero for the empty set. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ (𝜑 → ∅ ∈ dom 𝑅) & ⊢ (𝜑 → (𝑅‘∅) = 0) ⇒ ⊢ (𝜑 → (𝑀‘∅) = 0) | ||
Theorem | omsmon 30488 | A constructed outer measure is monotone. Note in Example 1.5.2 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝑄) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) | ||
Theorem | omssubaddlem 30489* | For any small margin 𝐸, we can find a covering approaching the outer measure of a set 𝐴 by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑄) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}Σ*𝑤 ∈ 𝑥(𝑅‘𝑤) < ((𝑀‘𝐴) + 𝐸)) | ||
Theorem | omssubadd 30490* | A constructed outer measure is countably sub-additive. Lemma 1.5.4 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 21-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ 𝑀 = (toOMeas‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → 𝐴 ⊆ ∪ 𝑄) & ⊢ (𝜑 → 𝑋 ≼ ω) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑦 ∈ 𝑋 𝐴) ≤ Σ*𝑦 ∈ 𝑋(𝑀‘𝐴)) | ||
Syntax | ccarsg 30491 | Class declaration for the Caratheodory sigma-Algebra construction. |
class toCaraSiga | ||
Definition | df-carsg 30492* | Define a function constructing Caratheodory measurable sets for a given outer measure. See carsgval 30493 for its value. Definition 1.11.2 of [Bogachev] p. 41. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒)}) | ||
Theorem | carsgval 30493* | Value of the Caratheodory sigma-Algebra construction function. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝑎)) +𝑒 (𝑀‘(𝑒 ∖ 𝑎))) = (𝑀‘𝑒)}) | ||
Theorem | carsgcl 30494 | Closure of the Caratheodory measurable sets. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂) | ||
Theorem | elcarsg 30495* | Property of being a Catatheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴 ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ 𝐴)) +𝑒 (𝑀‘(𝑒 ∖ 𝐴))) = (𝑀‘𝑒)))) | ||
Theorem | baselcarsg 30496 | The universe set, 𝑂, is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) ⇒ ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) | ||
Theorem | 0elcarsg 30497 | The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) ⇒ ⊢ (𝜑 → ∅ ∈ (toCaraSiga‘𝑀)) | ||
Theorem | carsguni 30498 | The union of all Caratheodory measurable sets is the universe. (Contributed by Thierry Arnoux, 22-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) ⇒ ⊢ (𝜑 → ∪ (toCaraSiga‘𝑀) = 𝑂) | ||
Theorem | elcarsgss 30499 | Caratheodory measurable sets are subsets of the universe. (Contributed by Thierry Arnoux, 21-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑂) | ||
Theorem | difelcarsg 30500 | The Caratheodory measurable sets are closed under complement. (Contributed by Thierry Arnoux, 17-May-2020.) |
⊢ (𝜑 → 𝑂 ∈ 𝑉) & ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) ⇒ ⊢ (𝜑 → (𝑂 ∖ 𝐴) ∈ (toCaraSiga‘𝑀)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |