![]() |
Metamath
Proof Explorer Theorem List (p. 296 of 431) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28055) |
![]() (28056-29580) |
![]() (29581-43033) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hatomistici 29501* | Cℋ is atomistic, i.e. any element is the supremum of its atoms. Remark in [Kalmbach] p. 140. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | ||
Theorem | chpssati 29502* | Two Hilbert lattice elements in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴)) | ||
Theorem | chrelati 29503* | The Hilbert lattice is relatively atomic. Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ HAtoms (𝐴 ⊊ (𝐴 ∨ℋ 𝑥) ∧ (𝐴 ∨ℋ 𝑥) ⊆ 𝐵)) | ||
Theorem | chrelat2i 29504* | A consequence of relative atomicity. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵)) | ||
Theorem | cvati 29505* | If a Hilbert lattice element covers another, it equals the other joined with some atom. This is a consequence of the relative atomicity of Hilbert space. (Contributed by NM, 30-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⋖ℋ 𝐵 → ∃𝑥 ∈ HAtoms (𝐴 ∨ℋ 𝑥) = 𝐵) | ||
Theorem | cvbr4i 29506* | An alternate way to express the covering property. (Contributed by NM, 30-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ∃𝑥 ∈ HAtoms (𝐴 ∨ℋ 𝑥) = 𝐵)) | ||
Theorem | cvexchlem 29507 | Lemma for cvexchi 29508. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)) | ||
Theorem | cvexchi 29508 | The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)) | ||
Theorem | chrelat2 29509* | A consequence of relative atomicity. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵))) | ||
Theorem | chrelat3 29510* | A consequence of relative atomicity. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵))) | ||
Theorem | chrelat3i 29511* | A consequence of the relative atomicity of Hilbert space: the ordering of Hilbert lattice elements is completely determined by the atoms they majorize. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | ||
Theorem | chrelat4i 29512* | A consequence of relative atomicity. Extensionality principle: two lattice elements are equal iff they majorize the same atoms. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | ||
Theorem | cvexch 29513 | The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | cvp 29514 | The Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → ((𝐴 ∩ 𝐵) = 0ℋ ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | atnssm0 29515 | The meet of a Hilbert lattice element and an incomparable atom is the zero subspace. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (¬ 𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 0ℋ)) | ||
Theorem | atnemeq0 29516 | The meet of distinct atoms is the zero subspace. (Contributed by NM, 25-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ≠ 𝐵 ↔ (𝐴 ∩ 𝐵) = 0ℋ)) | ||
Theorem | atssma 29517 | The meet with an atom's superset is the atom. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ∈ HAtoms)) | ||
Theorem | atcv0eq 29518 | Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (0ℋ ⋖ℋ (𝐴 ∨ℋ 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | atcv1 29519 | Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → (𝐴 = 0ℋ ↔ 𝐵 = 𝐶)) | ||
Theorem | atexch 29520 | The Hilbert lattice satisfies the atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem related to vector analysis was originally proved by Hermann Grassmann in 1862. Also Definition 3.4-3(b) in [MegPav2000] p. 2345 (PDF p. 8) (use atnemeq0 29516 to obtain atom inequality). (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | atomli 29521 | An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition 3.2.17 of [PtakPulmannova] p. 66. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐵 ∈ HAtoms → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0ℋ})) | ||
Theorem | atoml2i 29522 | An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition P8(ii) of [BeltramettiCassinelli1] p. 400. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ ¬ 𝐵 ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms) | ||
Theorem | atordi 29523 | An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) | ||
Theorem | atcvatlem 29524 | Lemma for atcvati 29525. (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐴 ≠ 0ℋ ∧ 𝐴 ⊊ (𝐵 ∨ℋ 𝐶))) → (¬ 𝐵 ⊆ 𝐴 → 𝐴 ∈ HAtoms)) | ||
Theorem | atcvati 29525 | A nonzero Hilbert lattice element less than the join of two atoms is an atom. (Contributed by NM, 28-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0ℋ ∧ 𝐴 ⊊ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
Theorem | atcvat2i 29526 | A Hilbert lattice element covered by the join of two distinct atoms is an atom. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
Theorem | atord 29527 | An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) | ||
Theorem | atcvat2 29528 | A Hilbert lattice element covered by the join of two distinct atoms is an atom. (Contributed by NM, 29-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
Theorem | chirredlem1 29529* | Lemma for chirredi 29533. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (((𝑝 ∈ HAtoms ∧ (𝑞 ∈ Cℋ ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ 𝐴) ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0ℋ) | ||
Theorem | chirredlem2 29530* | Lemma for chirredi 29533. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ Cℋ ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ 𝐴) ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 ∨ℋ 𝑞)) = 𝑞) | ||
Theorem | chirredlem3 29531* | Lemma for chirredi 29533. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 ⊆ 𝐴 → 𝑟 = 𝑝)) | ||
Theorem | chirredlem4 29532* | Lemma for chirredi 29533. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 = 𝑝 ∨ 𝑟 = 𝑞)) | ||
Theorem | chirredi 29533* | The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ (𝐴 = 0ℋ ∨ 𝐴 = ℋ) | ||
Theorem | chirred 29534* | The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 16-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) → (𝐴 = 0ℋ ∨ 𝐴 = ℋ)) | ||
Theorem | atcvat3i 29535 | A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴) ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)) → (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) ∈ HAtoms)) | ||
Theorem | atcvat4i 29536* | A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ (𝐶 ∨ℋ 𝑥)))) | ||
Theorem | atdmd 29537 | Two Hilbert lattice elements have the dual modular pair property if the first is an atom. Theorem 7.6(c) of [MaedaMaeda] p. 31. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | atmd 29538 | Two Hilbert lattice elements have the modular pair property if the first is an atom. Theorem 7.6(b) of [MaedaMaeda] p. 31. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | atmd2 29539 | Two Hilbert lattice elements have the dual modular pair property if the second is an atom. Part of Exercise 6 of [Kalmbach] p. 103. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | atabsi 29540 | Absorption of an incomparable atom. Similar to Exercise 7.1 of [MaedaMaeda] p. 34. (Contributed by NM, 15-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ 𝐵) = (𝐴 ∩ 𝐵))) | ||
Theorem | atabs2i 29541 | Absorption of an incomparable atom. (Contributed by NM, 18-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = 𝐴)) | ||
Theorem | mdsymlem1 29542* | Lemma for mdsymi 29550. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → 𝑝 ⊆ 𝐴) | ||
Theorem | mdsymlem2 29543* | Lemma for mdsymi 29550. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (((𝑝 ∈ HAtoms ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐵 ≠ 0ℋ → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)))) | ||
Theorem | mdsymlem3 29544* | Lemma for mdsymi 29550. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝐴 ≠ 0ℋ) → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) | ||
Theorem | mdsymlem4 29545* | Lemma for mdsymi 29550. This is the forward direction of Lemma 4(i) of [Maeda] p. 168. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (𝑝 ∈ HAtoms → ((𝐵 𝑀ℋ* 𝐴 ∧ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)))) | ||
Theorem | mdsymlem5 29546* | Lemma for mdsymi 29550. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (((𝑐 ∈ Cℋ ∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))))) | ||
Theorem | mdsymlem6 29547* | Lemma for mdsymi 29550. This is the converse direction of Lemma 4(i) of [Maeda] p. 168, and is based on the proof of Theorem 1(d) to (e) of [Maeda] p. 167. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → 𝐵 𝑀ℋ* 𝐴) | ||
Theorem | mdsymlem7 29548* | Lemma for mdsymi 29550. Lemma 4(i) of [Maeda] p. 168. Note that Maeda's 1965 definition of dual modular pair has reversed arguments compared to the later (1970) definition given in Remark 29.6 of [MaedaMaeda] p. 130, which is the one that we use. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) → (𝐵 𝑀ℋ* 𝐴 ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))))) | ||
Theorem | mdsymlem8 29549* | Lemma for mdsymi 29550. Lemma 4(ii) of [Maeda] p. 168. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) → (𝐵 𝑀ℋ* 𝐴 ↔ 𝐴 𝑀ℋ* 𝐵)) | ||
Theorem | mdsymi 29550 | M-symmetry of the Hilbert lattice. Lemma 5 of [Maeda] p. 168. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴) | ||
Theorem | mdsym 29551 | M-symmetry of the Hilbert lattice. Lemma 5 of [Maeda] p. 168. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) | ||
Theorem | dmdsym 29552 | Dual M-symmetry of the Hilbert lattice. (Contributed by NM, 25-Jul-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ 𝐵 𝑀ℋ* 𝐴)) | ||
Theorem | atdmd2 29553 | Two Hilbert lattice elements have the dual modular pair property if the second is an atom. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | sumdmdii 29554 | If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in [MaedaMaeda] p. 139. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | cmmdi 29555 | Commuting subspaces form a modular pair. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | cmdmdi 29556 | Commuting subspaces form a dual modular pair. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | sumdmdlem 29557 | Lemma for sumdmdi 29559. The span of vector 𝐶 not in the subspace sum is "trimmed off." (Contributed by NM, 18-Dec-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵)) → ((𝐵 +ℋ (span‘{𝐶})) ∩ 𝐴) = (𝐵 ∩ 𝐴)) | ||
Theorem | sumdmdlem2 29558* | Lemma for sumdmdi 29559. (Contributed by NM, 23-Dec-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑥 ∈ HAtoms ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | sumdmdi 29559 | The subspace sum of two Hilbert lattice elements is closed iff the elements are a dual modular pair. Theorem 2 of [Holland] p. 1519. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) ↔ 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | dmdbr4ati 29560* | Dual modular pair property in terms of atoms. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) | ||
Theorem | dmdbr5ati 29561* | Dual modular pair property in terms of atoms. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
Theorem | dmdbr6ati 29562* | Dual modular pair property in terms of atoms. The modular law takes the form of the shearing identity. (Contributed by NM, 18-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) | ||
Theorem | dmdbr7ati 29563* | Dual modular pair property in terms of atoms. (Contributed by NM, 18-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) | ||
Theorem | mdoc1i 29564 | Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝑀ℋ (⊥‘𝐴) | ||
Theorem | mdoc2i 29565 | Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ 𝐴 | ||
Theorem | dmdoc1i 29566 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝑀ℋ* (⊥‘𝐴) | ||
Theorem | dmdoc2i 29567 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ* 𝐴 | ||
Theorem | mdcompli 29568 | A condition equivalent to the modular pair property. Part of proof of Theorem 1.14 of [MaedaMaeda] p. 4. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
Theorem | dmdcompli 29569 | A condition equivalent to the dual modular pair property. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
Theorem | mddmdin0i 29570* | If dual modular implies modular whenever meet is zero, then dual modular implies modular for arbitrary lattice elements. This theorem is needed for the remark after Lemma 7 of [Holland] p. 1524 to hold. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ ((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) → 𝑥 𝑀ℋ 𝑦) ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | cdjreui 29571* | A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
Theorem | cdj1i 29572* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑤 ∈ ℝ (0 < 𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑣)) ≤ (𝑤 · (normℎ‘(𝑦 +ℎ 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ 𝑧))))) | ||
Theorem | cdj3lem1 29573* | A property of "𝐴 and 𝐵 are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑧)) ≤ (𝑥 · (normℎ‘(𝑦 +ℎ 𝑧)))) → (𝐴 ∩ 𝐵) = 0ℋ) | ||
Theorem | cdj3lem2 29574* | Lemma for cdj3i 29580. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) | ||
Theorem | cdj3lem2a 29575* | Lemma for cdj3i 29580. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) | ||
Theorem | cdj3lem2b 29576* | Lemma for cdj3i 29580. The first-component function 𝑆 is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) | ||
Theorem | cdj3lem3 29577* | Lemma for cdj3i 29580. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) | ||
Theorem | cdj3lem3a 29578* | Lemma for cdj3i 29580. Closure of the second-component function 𝑇. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘𝐶) ∈ 𝐵) | ||
Theorem | cdj3lem3b 29579* | Lemma for cdj3i 29580. The second-component function 𝑇 is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) | ||
Theorem | cdj3i 29580* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) <=> (3) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 1-Jun-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) & ⊢ (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) ↔ ((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝜑 ∧ 𝜓)) | ||
Theorem | mathbox 29581 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of set.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of set.mm. Mathboxes are provided to help keep your work synchronized with changes in set.mm while allowing you to work independently without affecting other contributors. Even though in a sense your mathbox belongs to you, it is still part of the shared body of knowledge contained in set.mm, and occasionally other people may make maintenance edits to your mathbox for things like keeping it synchronized with the rest of set.mm, reducing proof lengths, moving your theorems to the main part of set.mm when needed, and fixing typos or other errors. If you want to preserve it the way you left it, you can keep a local copy or keep track of the GitHub commit number. Guidelines: 1. See conventions 27539 for our general style guidelines. For contributing via GitHub, see https://github.com/metamath/set.mm/blob/develop/CONTRIBUTING.md. The metamath program command "verify markup *" will check that you have followed many of of the conventions we use. 2. If at all possible, please use only nullary class constants for new definitions, for example as in df-div 10848. 3. Each $p and $a statement must be immediately preceded with the comment that will be shown on its web page description. The metamath program command "write source set.mm /rewrap" will take care of our indentation conventions and line wrapping. 4. All mathbox content will be on public display and should hopefully reflect the overall quality of the website. 5. Mathboxes must be independent from one another (checked by "verify markup *"). If you need a theorem from another mathbox, typically it is moved to the main part of set.mm. New users should consult with more experienced users before doing this. (Contributed by NM, 20-Feb-2007.) (New usage is discouraged.) |
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
Theorem | foo3 29582 | A theorem about the universal class. (Contributed by Stefan Allan, 9-Dec-2008.) |
⊢ 𝜑 ⇒ ⊢ V = {𝑥 ∣ 𝜑} | ||
Theorem | xfree 29583 | A partial converse to 19.9t 2206. (Contributed by Stefan Allan, 21-Dec-2008.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | ||
Theorem | xfree2 29584 | A partial converse to 19.9t 2206. (Contributed by Stefan Allan, 21-Dec-2008.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
Theorem | addltmulALT 29585 | A proof readability experiment for addltmul 11431. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)) | ||
Theorem | bian1d 29586 | Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
Theorem | or3di 29587 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) | ||
Theorem | or3dir 29588 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∨ 𝜏) ↔ ((𝜑 ∨ 𝜏) ∧ (𝜓 ∨ 𝜏) ∧ (𝜒 ∨ 𝜏))) | ||
Theorem | 3o1cs 29589 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | 3o2cs 29590 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
Theorem | 3o3cs 29591 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜒 → 𝜃) | ||
Theorem | spc2ed 29592* | Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (𝜒 → ∃𝑥∃𝑦𝜓)) | ||
Theorem | spc2d 29593* | Specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∀𝑥∀𝑦𝜓 → 𝜒)) | ||
Theorem | vtocl2d 29594* | Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | eqri 29595 | Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
Theorem | ralcom4f 29596* | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexcom4f 29597* | Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | 19.9d2rf 29598 | A deduction version of one direction of 19.9 2207 with two variables. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | 19.9d2r 29599* | A deduction version of one direction of 19.9 2207 with two variables. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | r19.29ffa 29600* | A commonly used pattern based on r19.29 3198, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) |
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → 𝜒) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |