![]() |
Metamath
Proof Explorer Theorem List (p. 29 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nfeqd 2801 | Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) | ||
Theorem | nfeld 2802 | Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) | ||
Theorem | nfnfc 2803 | Hypothesis builder for Ⅎ𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-13 2282. (Revised by Wolf Lammen, 10-Dec-2019.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 | ||
Theorem | nfnfcALT 2804 | Alternate proof of nfnfc 2803. Shorter but requiring more axioms. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 | ||
Theorem | nfeq 2805 | Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 = 𝐵 | ||
Theorem | nfel 2806 | Hypothesis builder for elementhood. (Contributed by NM, 1-Aug-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | ||
Theorem | nfeq1 2807* | Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝐴 = 𝐵 | ||
Theorem | nfel1 2808* | Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | ||
Theorem | nfeq2 2809* | Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 = 𝐵 | ||
Theorem | nfel2 2810* | Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | ||
Theorem | drnfc1 2811 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑦𝐵)) | ||
Theorem | drnfc2 2812 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝐴 ↔ Ⅎ𝑧𝐵)) | ||
Theorem | nfabd2 2813 | Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) | ||
Theorem | nfabd 2814 | Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) | ||
Theorem | dvelimdc 2815 | Deduction form of dvelimc 2816. (Contributed by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑧𝐵) & ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) | ||
Theorem | dvelimc 2816 | Version of dvelim 2368 for classes. (Contributed by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑧𝐵 & ⊢ (𝑧 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵) | ||
Theorem | nfcvf 2817 | If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. (Contributed by Mario Carneiro, 8-Oct-2016.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) | ||
Theorem | nfcvf2 2818 | If 𝑥 and 𝑦 are distinct, then 𝑦 is not free in 𝑥. (Contributed by Mario Carneiro, 5-Dec-2016.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) | ||
Theorem | cleqf 2819 | Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2753. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
Theorem | abid2f 2820 | A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | ||
Theorem | abeq2f 2821 | Equality of a class variable and a class abstraction. In this version, the fact that 𝑥 is a non-free variable in 𝐴 is explicitly stated as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | ||
Theorem | sbabel 2822* | Theorem to move a substitution in and out of a class abstraction. (Contributed by NM, 27-Sep-2003.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 26-Dec-2019.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ ([𝑦 / 𝑥]{𝑧 ∣ 𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴) | ||
Syntax | wne 2823 | Extend wff notation to include inequality. |
wff 𝐴 ≠ 𝐵 | ||
Definition | df-ne 2824 | Define inequality. (Contributed by NM, 26-May-1993.) |
⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | ||
Theorem | neii 2825 | Inference associated with df-ne 2824. (Contributed by BJ, 7-Jul-2018.) |
⊢ 𝐴 ≠ 𝐵 ⇒ ⊢ ¬ 𝐴 = 𝐵 | ||
Theorem | neir 2826 | Inference associated with df-ne 2824. (Contributed by BJ, 7-Jul-2018.) |
⊢ ¬ 𝐴 = 𝐵 ⇒ ⊢ 𝐴 ≠ 𝐵 | ||
Theorem | nne 2827 | Negation of inequality. (Contributed by NM, 9-Jun-2006.) |
⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | ||
Theorem | neneqd 2828 | Deduction eliminating inequality definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | ||
Theorem | neneq 2829 | From inequality to non equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | ||
Theorem | neqned 2830 | If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2828. One-way deduction form of df-ne 2824. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2849. (Revised by Wolf Lammen, 22-Nov-2019.) |
⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | neqne 2831 | From non equality to inequality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | ||
Theorem | neirr 2832 | No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
⊢ ¬ 𝐴 ≠ 𝐴 | ||
Theorem | exmidne 2833 | Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) |
⊢ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) | ||
Theorem | eqneqall 2834 | A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝜑)) | ||
Theorem | nonconne 2835 | Law of noncontradiction with equality and inequality. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 21-Dec-2019.) |
⊢ ¬ (𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐵) | ||
Theorem | necon3ad 2836 | Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | ||
Theorem | necon3bd 2837 | Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) ⇒ ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) | ||
Theorem | necon2ad 2838 | Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) ⇒ ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) | ||
Theorem | necon2bd 2839 | Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | ||
Theorem | necon1ad 2840 | Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | ||
Theorem | necon1bd 2841 | Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) ⇒ ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | ||
Theorem | necon4ad 2842 | Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) ⇒ ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | ||
Theorem | necon4bd 2843 | Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | ||
Theorem | necon3d 2844 | Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.) |
⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) ⇒ ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) | ||
Theorem | necon1d 2845 | Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) ⇒ ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) | ||
Theorem | necon2d 2846 | Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.) |
⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 ≠ 𝐷)) ⇒ ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 ≠ 𝐵)) | ||
Theorem | necon4d 2847 | Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) ⇒ ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) | ||
Theorem | necon3ai 2848 | Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) | ||
Theorem | necon3bi 2849 | Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
⊢ (𝐴 = 𝐵 → 𝜑) ⇒ ⊢ (¬ 𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | necon1ai 2850 | Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
⊢ (¬ 𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝐴 ≠ 𝐵 → 𝜑) | ||
Theorem | necon1bi 2851 | Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
⊢ (𝐴 ≠ 𝐵 → 𝜑) ⇒ ⊢ (¬ 𝜑 → 𝐴 = 𝐵) | ||
Theorem | necon2ai 2852 | Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
⊢ (𝐴 = 𝐵 → ¬ 𝜑) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | necon2bi 2853 | Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | ||
Theorem | necon4ai 2854 | Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | necon3i 2855 | Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) | ||
Theorem | necon1i 2856 | Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) |
⊢ (𝐴 ≠ 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ (𝐶 ≠ 𝐷 → 𝐴 = 𝐵) | ||
Theorem | necon2i 2857 | Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) |
⊢ (𝐴 = 𝐵 → 𝐶 ≠ 𝐷) ⇒ ⊢ (𝐶 = 𝐷 → 𝐴 ≠ 𝐵) | ||
Theorem | necon4i 2858 | Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
⊢ (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷) ⇒ ⊢ (𝐶 = 𝐷 → 𝐴 = 𝐵) | ||
Theorem | necon3abid 2859 | Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) ⇒ ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) | ||
Theorem | necon3bbid 2860 | Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) | ||
Theorem | necon1abid 2861 | Contrapositive deduction for inequality. (Contributed by NM, 21-Aug-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝜓)) | ||
Theorem | necon1bbid 2862 | Contrapositive inference for inequality. (Contributed by NM, 31-Jan-2008.) |
⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝜓)) ⇒ ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 = 𝐵)) | ||
Theorem | necon4abid 2863 | Contrapositive law deduction for inequality. (Contributed by NM, 11-Jan-2008.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | ||
Theorem | necon4bbid 2864 | Contrapositive law deduction for inequality. (Contributed by NM, 9-May-2012.) |
⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | ||
Theorem | necon2abid 2865 | Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) | ||
Theorem | necon2bbid 2866 | Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) | ||
Theorem | necon3bid 2867 | Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) | ||
Theorem | necon4bid 2868 | Contrapositive law deduction for inequality. (Contributed by NM, 29-Jun-2007.) |
⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | ||
Theorem | necon3abii 2869 | Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.) |
⊢ (𝐴 = 𝐵 ↔ 𝜑) ⇒ ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) | ||
Theorem | necon3bbii 2870 | Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
⊢ (𝜑 ↔ 𝐴 = 𝐵) ⇒ ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) | ||
Theorem | necon1abii 2871 | Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (¬ 𝜑 ↔ 𝐴 = 𝐵) ⇒ ⊢ (𝐴 ≠ 𝐵 ↔ 𝜑) | ||
Theorem | necon1bbii 2872 | Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
⊢ (𝐴 ≠ 𝐵 ↔ 𝜑) ⇒ ⊢ (¬ 𝜑 ↔ 𝐴 = 𝐵) | ||
Theorem | necon2abii 2873 | Contrapositive inference for inequality. (Contributed by NM, 2-Mar-2007.) |
⊢ (𝐴 = 𝐵 ↔ ¬ 𝜑) ⇒ ⊢ (𝜑 ↔ 𝐴 ≠ 𝐵) | ||
Theorem | necon2bbii 2874 | Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
⊢ (𝜑 ↔ 𝐴 ≠ 𝐵) ⇒ ⊢ (𝐴 = 𝐵 ↔ ¬ 𝜑) | ||
Theorem | necon3bii 2875 | Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) ⇒ ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) | ||
Theorem | necom 2876 | Commutation of inequality. (Contributed by NM, 14-May-1999.) |
⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | ||
Theorem | necomi 2877 | Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
⊢ 𝐴 ≠ 𝐵 ⇒ ⊢ 𝐵 ≠ 𝐴 | ||
Theorem | necomd 2878 | Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≠ 𝐴) | ||
Theorem | nesym 2879 | Characterization of inequality in terms of reversed equality (see bicom 212). (Contributed by BJ, 7-Jul-2018.) |
⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) | ||
Theorem | nesymi 2880 | Inference associated with nesym 2879. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ 𝐴 ≠ 𝐵 ⇒ ⊢ ¬ 𝐵 = 𝐴 | ||
Theorem | nesymir 2881 | Inference associated with nesym 2879. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ ¬ 𝐴 = 𝐵 ⇒ ⊢ 𝐵 ≠ 𝐴 | ||
Theorem | neeq1d 2882 | Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | ||
Theorem | neeq2d 2883 | Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | ||
Theorem | neeq12d 2884 | Deduction for inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷)) | ||
Theorem | neeq1 2885 | Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) (Proof shortened by Wolf Lammen, 18-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | ||
Theorem | neeq2 2886 | Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) (Proof shortened by Wolf Lammen, 18-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) | ||
Theorem | neeq1i 2887 | Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) | ||
Theorem | neeq2i 2888 | Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵) | ||
Theorem | neeq12i 2889 | Inference for inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷) | ||
Theorem | eqnetrd 2890 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | eqnetrrd 2891 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ≠ 𝐶) | ||
Theorem | neeqtrd 2892 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | eqnetri 2893 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 ≠ 𝐶 ⇒ ⊢ 𝐴 ≠ 𝐶 | ||
Theorem | eqnetrri 2894 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐴 ≠ 𝐶 ⇒ ⊢ 𝐵 ≠ 𝐶 | ||
Theorem | neeqtri 2895 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 ≠ 𝐶 | ||
Theorem | neeqtrri 2896 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ 𝐴 ≠ 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 ≠ 𝐶 | ||
Theorem | neeqtrrd 2897 | Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | syl5eqner 2898 | A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | 3netr3d 2899 | Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) | ||
Theorem | 3netr4d 2900 | Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |