![]() |
Metamath
Proof Explorer Theorem List (p. 277 of 431) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28055) |
![]() (28056-29580) |
![]() (29581-43033) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | avril1 27601 |
Poisson d'Avril's Theorem. This theorem is noted for its
Selbstdokumentieren property, which means, literally,
"self-documenting" and recalls the principle of quidquid
german dictum
sit, altum viditur, often used in set theory. Starting with the
seemingly simple yet profound fact that any object 𝑥 equals
itself
(proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we
demonstrate that the power set of the real numbers, as a relation on the
value of the imaginary unit, does not conjoin with an empty relation on
the product of the additive and multiplicative identity elements,
leading to this startling conclusion that has left even seasoned
professional mathematicians scratching their heads. (Contributed by
Prof. Loof Lirpa, 1-Apr-2005.) (Proof modification is discouraged.)
(New usage is discouraged.)
A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry. |
⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) | ||
Theorem | 2bornot2b 27602 | The law of excluded middle. Act III, Theorem 1 of Shakespeare, Hamlet, Prince of Denmark (1602). Its author leaves its proof as an exercise for the reader - "To be, or not to be: that is the question" - starting a trend that has become standard in modern-day textbooks, serving to make the frustrated reader feel inferior, or in some cases to mask the fact that the author does not know its solution. (Contributed by Prof. Loof Lirpa, 1-Apr-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (2 · 𝐵 ∨ ¬ 2 · 𝐵) | ||
Theorem | helloworld 27603 | The classic "Hello world" benchmark has been translated into 314 computer programming languages - see http://www.roesler-ac.de/wolfram/hello.htm. However, for many years it eluded a proof that it is more than just a conjecture, even though a wily mathematician once claimed, "I have discovered a truly marvelous proof of this, which this margin is too narrow to contain." Using an IBM 709 mainframe, a team of mathematicians led by Prof. Loof Lirpa, at the New College of Tahiti, were finally able put it rest with a remarkably short proof only 4 lines long. (Contributed by Prof. Loof Lirpa, 1-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ (ℎ ∈ (𝐿𝐿0) ∧ 𝑊∅(R1𝑑)) | ||
Theorem | 1p1e2apr1 27604 | One plus one equals two. Using proof-shortening techniques pioneered by Mr. Mel L. O'Cat, along with the latest supercomputer technology, Prof. Loof Lirpa and colleagues were able to shorten Whitehead and Russell's 360-page proof that 1+1=2 in Principia Mathematica to this remarkable proof only two steps long, thus establishing a new world's record for this famous theorem. (Contributed by Prof. Loof Lirpa, 1-Apr-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (1 + 1) = 2 | ||
Theorem | eqid1 27605 |
Law of identity (reflexivity of class equality). Theorem 6.4 of [Quine]
p. 41.
This law is thought to have originated with Aristotle (Metaphysics, Book VII, Part 17). It is one of the three axioms of Ayn Rand's philosophy (Atlas Shrugged, Part Three, Chapter VII). While some have proposed extending Rand's axiomatization to include Compassion and Kindness, others fear that such an extension may flirt with logical inconsistency. (Contributed by Stefan Allan, 1-Apr-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 = 𝐴 | ||
Theorem | 1div0apr 27606 | Division by zero is forbidden! If we try, we encounter the DO NOT ENTER sign, which in mathematics means it is foolhardy to venture any further, possibly putting the underlying fabric of reality at risk. Based on a dare by David A. Wheeler. (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (1 / 0) = ∅ | ||
Theorem | topnfbey 27607 | Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Modified by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) | ||
Syntax | cplig 27608 | Extend class notation with the class of all planar incidence geometries. |
class Plig | ||
Definition | df-plig 27609* |
Define the class of planar incidence geometries. We use Hilbert's
axioms and adapt them to planar geometry. We use ∈ for the
incidence relation. We could have used a generic binary relation, but
using ∈ allows us to reuse previous
results. Much of what follows
is directly borrowed from Aitken, Incidence-Betweenness Geometry,
2008, http://public.csusm.edu/aitken_html/m410/betweenness.08.pdf.
The class Plig is the class of planar incidence geometries, where a planar incidence geometry is defined as a set of lines satisfying three axioms. In the definition below, 𝑥 denotes a planar incidence geometry, so ∪ 𝑥 denotes the union of its lines, that is, the set of points in the plane, 𝑙 denotes a line, and 𝑎, 𝑏, 𝑐 denote points. Therefore, the axioms are: 1) for all pairs of (distinct) points, there exists a unique line containing them; 2) all lines contain at least two points; 3) there exist three non-collinear points. (Contributed by FL, 2-Aug-2009.) |
⊢ Plig = {𝑥 ∣ (∀𝑎 ∈ ∪ 𝑥∀𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝑥 ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥∃𝑐 ∈ ∪ 𝑥∀𝑙 ∈ 𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙))} | ||
Theorem | isplig 27610* | The predicate "is a planar incidence geometry" for sets. (Contributed by FL, 2-Aug-2009.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Plig ↔ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)))) | ||
Theorem | ispligb 27611* | The predicate "is a planar incidence geometry". (Contributed by BJ, 2-Dec-2021.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ (𝐺 ∈ Plig ↔ (𝐺 ∈ V ∧ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)))) | ||
Theorem | tncp 27612* | In any planar incidence geometry, there exist three non-collinear points. (Contributed by FL, 3-Aug-2009.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ (𝐺 ∈ Plig → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)) | ||
Theorem | l2p 27613* | For any line in a planar incidence geometry, there exist two different points on the line. (Contributed by AV, 28-Nov-2021.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ ((𝐺 ∈ Plig ∧ 𝐿 ∈ 𝐺) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿)) | ||
Theorem | lpni 27614* | For any line in a planar incidence geometry, there exists a point not on the line. (Contributed by Jeff Hankins, 15-Aug-2009.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ ((𝐺 ∈ Plig ∧ 𝐿 ∈ 𝐺) → ∃𝑎 ∈ 𝑃 𝑎 ∉ 𝐿) | ||
Theorem | nsnlplig 27615 | There is no "one-point line" in a planar incidence geometry. (Contributed by BJ, 2-Dec-2021.) (Proof shortened by AV, 5-Dec-2021.) |
⊢ (𝐺 ∈ Plig → ¬ {𝐴} ∈ 𝐺) | ||
Theorem | nsnlpligALT 27616 | Alternate version of nsnlplig 27615 using the predicate ∉ instead of ¬ ∈ and whose proof is shorter. (Contributed by AV, 5-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐺 ∈ Plig → {𝐴} ∉ 𝐺) | ||
Theorem | n0lplig 27617 | There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.) |
⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) | ||
Theorem | n0lpligALT 27618 | Alternate version of n0lplig 27617 using the predicate ∉ instead of ¬ ∈ and whose proof bypasses nsnlplig 27615. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐺 ∈ Plig → ∅ ∉ 𝐺) | ||
Theorem | eulplig 27619* | Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ ((𝐺 ∈ Plig ∧ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) ∧ 𝐴 ≠ 𝐵)) → ∃!𝑙 ∈ 𝐺 (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙)) | ||
Theorem | pliguhgr 27620 | Any planar incidence geometry 𝐺 can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 26144 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.) |
⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) | ||
This section contains a few aliases that we temporarily keep to prevent broken links. If you land on any of these, please let the originating site and/or us know that the link that made you land here should be changed. | ||
Theorem | dummylink 27621 |
Alias for a1ii 1 that may be referenced in some older works, and
kept
here to prevent broken links.
If you landed here, please let the originating site and/or us know that the link that made you land here should be changed to a link to a1ii 1. (Contributed by NM, 7-Feb-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ 𝜑 | ||
Theorem | id1 27622 |
Alias for idALT 23 that may be referenced in some older works, and
kept
here to prevent broken links.
If you landed here, please let the originating site and/or us know that the link that made you land here should be changed to a link to idALT 23. (Contributed by NM, 30-Sep-1992.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜑) | ||
The intent is for this deprecated section to be deleted once its theorems have extensible structure versions (or are not useful). You can make a list of "terminal" theorems (i.e., theorems not referenced by anything else) and for each theorem see if there exists an extensible structure version (or decide it is not useful), and if so, delete it. Then repeat this recursively. One way to search for terminal theorems is to log the output ("open log x.txt") of "show usage <label-match>" in metamath.exe and search for "(None)". | ||
This section contains an earlier development of groups that was defined before extensible structures were introduced. The intent is for this deprecated section to be deleted once the corresponding definitions and theorems for complex topological vector spaces, which are using them, are revised accordingly. | ||
Syntax | cgr 27623 | Extend class notation with the class of all group operations. |
class GrpOp | ||
Syntax | cgi 27624 | Extend class notation with a function mapping a group operation to the group's identity element. |
class GId | ||
Syntax | cgn 27625 | Extend class notation with a function mapping a group operation to the inverse function for the group. |
class inv | ||
Syntax | cgs 27626 | Extend class notation with a function mapping a group operation to the division (or subtraction) operation for the group. |
class /𝑔 | ||
Definition | df-grpo 27627* | Define the class of all group operations. The base set for a group can be determined from its group operation. Based on the definition in Exercise 28 of [Herstein] p. 54. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ GrpOp = {𝑔 ∣ ∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 ∀𝑧 ∈ 𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢 ∈ 𝑡 ∀𝑥 ∈ 𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢))} | ||
Definition | df-gid 27628* | Define a function that maps a group operation to the group's identity element. (Contributed by FL, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ GId = (𝑔 ∈ V ↦ (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) | ||
Definition | df-ginv 27629* | Define a function that maps a group operation to the group's inverse function. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.) |
⊢ inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔)))) | ||
Definition | df-gdiv 27630* | Define a function that maps a group operation to the group's division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | ||
Theorem | isgrpo 27631* | The predicate "is a group operation." Note that 𝑋 is the base set of the group. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)))) | ||
Theorem | isgrpoi 27632* | Properties that determine a group operation. Read 𝑁 as 𝑁(𝑥). (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 ∈ V & ⊢ 𝐺:(𝑋 × 𝑋)⟶𝑋 & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) & ⊢ 𝑈 ∈ 𝑋 & ⊢ (𝑥 ∈ 𝑋 → (𝑈𝐺𝑥) = 𝑥) & ⊢ (𝑥 ∈ 𝑋 → 𝑁 ∈ 𝑋) & ⊢ (𝑥 ∈ 𝑋 → (𝑁𝐺𝑥) = 𝑈) ⇒ ⊢ 𝐺 ∈ GrpOp | ||
Theorem | grpofo 27633 | A group operation maps onto the group's underlying set. (Contributed by NM, 30-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto→𝑋) | ||
Theorem | grpocl 27634 | Closure law for a group operation. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | grpolidinv 27635* | A group has a left identity element, and every member has a left inverse. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)) | ||
Theorem | grpon0 27636 | The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑋 ≠ ∅) | ||
Theorem | grpoass 27637 | A group operation is associative. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) | ||
Theorem | grpoidinvlem1 27638 | Lemma for grpoidinv 27642. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈) | ||
Theorem | grpoidinvlem2 27639 | Lemma for grpoidinv 27642. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌)) | ||
Theorem | grpoidinvlem3 27640* | Lemma for grpoidinv 27642. (Contributed by NM, 11-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) & ⊢ (𝜓 ↔ ∀𝑥 ∈ 𝑋 ∃𝑧 ∈ 𝑋 (𝑧𝐺𝑥) = 𝑈) ⇒ ⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) | ||
Theorem | grpoidinvlem4 27641* | Lemma for grpoidinv 27642. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴)) | ||
Theorem | grpoidinv 27642* | A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))) | ||
Theorem | grpoideu 27643* | The left identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) | ||
Theorem | grporndm 27644 | A group's range in terms of its domain. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
⊢ (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺) | ||
Theorem | 0ngrp 27645 | The empty set is not a group. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.) |
⊢ ¬ ∅ ∈ GrpOp | ||
Theorem | gidval 27646* | The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) | ||
Theorem | grpoidval 27647* | Lemma for grpoidcl 27648 and others. (Contributed by NM, 5-Feb-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥)) | ||
Theorem | grpoidcl 27648 | The identity element of a group belongs to the group. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋) | ||
Theorem | grpoidinv2 27649* | A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) | ||
Theorem | grpolid 27650 | The identity element of a group is a left identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑈𝐺𝐴) = 𝐴) | ||
Theorem | grporid 27651 | The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑈) = 𝐴) | ||
Theorem | grporcan 27652 | Right cancellation law for groups. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | grpoinveu 27653* | The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) | ||
Theorem | grpoid 27654 | Two ways of saying that an element of a group is the identity element. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴)) | ||
Theorem | grporn 27655 | The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ GrpOp & ⊢ dom 𝐺 = (𝑋 × 𝑋) ⇒ ⊢ 𝑋 = ran 𝐺 | ||
Theorem | grpoinvfval 27656* | The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) | ||
Theorem | grpoinvval 27657* | The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) | ||
Theorem | grpoinvcl 27658 | A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) | ||
Theorem | grpoinv 27659 | The properties of a group element's inverse. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈)) | ||
Theorem | grpolinv 27660 | The left inverse of a group element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) | ||
Theorem | grporinv 27661 | The right inverse of a group element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) | ||
Theorem | grpoinvid1 27662 | The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) = 𝐵 ↔ (𝐴𝐺𝐵) = 𝑈)) | ||
Theorem | grpoinvid2 27663 | The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈)) | ||
Theorem | grpolcan 27664 | Left cancellation law for groups. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | grpo2inv 27665 | Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) | ||
Theorem | grpoinvf 27666 | Mapping of the inverse function of a group. (Contributed by NM, 29-Mar-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑁:𝑋–1-1-onto→𝑋) | ||
Theorem | grpoinvop 27667 | The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺𝐵)) = ((𝑁‘𝐵)𝐺(𝑁‘𝐴))) | ||
Theorem | grpodivfval 27668* | Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) | ||
Theorem | grpodivval 27669 | Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) | ||
Theorem | grpodivinv 27670 | Group division by an inverse. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝑁‘𝐵)) = (𝐴𝐺𝐵)) | ||
Theorem | grpoinvdiv 27671 | Inverse of a group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝐵𝐷𝐴)) | ||
Theorem | grpodivf 27672 | Mapping for group division. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | grpodivcl 27673 | Closure of group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) | ||
Theorem | grpodivdiv 27674 | Double group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵))) | ||
Theorem | grpomuldivass 27675 | Associative-type law for multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = (𝐴𝐺(𝐵𝐷𝐶))) | ||
Theorem | grpodivid 27676 | Division of a group member by itself. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 𝑈) | ||
Theorem | grponpcan 27677 | Cancellation law for group division. (npcan 10453 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) | ||
Syntax | cablo 27678 | Extend class notation with the class of all Abelian group operations. |
class AbelOp | ||
Definition | df-ablo 27679* | Define the class of all Abelian group operations. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)} | ||
Theorem | isablo 27680* | The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) | ||
Theorem | ablogrpo 27681 | An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | ||
Theorem | ablocom 27682 | An Abelian group operation is commutative. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) | ||
Theorem | ablo32 27683 | Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) | ||
Theorem | ablo4 27684 | Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) | ||
Theorem | isabloi 27685* | Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ GrpOp & ⊢ dom 𝐺 = (𝑋 × 𝑋) & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ 𝐺 ∈ AbelOp | ||
Theorem | ablomuldiv 27686 | Law for group multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵)) | ||
Theorem | ablodivdiv 27687 | Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶)) | ||
Theorem | ablodivdiv4 27688 | Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = (𝐴𝐷(𝐵𝐺𝐶))) | ||
Theorem | ablodiv32 27689 | Swap the second and third terms in a double division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐷𝐵)) | ||
Theorem | ablonnncan 27690 | Cancellation law for group division. (nnncan 10479 analog.) (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷(𝐵𝐷𝐶))𝐷𝐶) = (𝐴𝐷𝐵)) | ||
Theorem | ablonncan 27691 | Cancellation law for group division. (nncan 10473 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) | ||
Theorem | ablonnncan1 27692 | Cancellation law for group division. (nnncan1 10480 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = (𝐶𝐷𝐵)) | ||
Syntax | cvc 27693 | Extend class notation with the class of all complex vector spaces. |
class CVecOLD | ||
Definition | df-vc 27694* | Define the class of all complex vector spaces. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ CVecOLD = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} | ||
Theorem | vcrel 27695 | The class of all complex vector spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
⊢ Rel CVecOLD | ||
Theorem | vciOLD 27696* | Obsolete version of cvsi 23101 as of 21-Sep-2021. The properties of a complex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. The variable 𝑊 was chosen because V is already used for the universal class. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) | ||
Theorem | vcsm 27697 | Functionality of th scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑊 ∈ CVecOLD → 𝑆:(ℂ × 𝑋)⟶𝑋) | ||
Theorem | vccl 27698 | Closure of the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) | ||
Theorem | vcidOLD 27699 | Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) Obsolete as of 21-Sep-2021. Use clmvs1 23064 together with cvsclm 23097 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) | ||
Theorem | vcdi 27700 | Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |