HomeHome Metamath Proof Explorer
Theorem List (p. 254 of 429)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27903)
  Hilbert Space Explorer  Hilbert Space Explorer
(27904-29428)
  Users' Mathboxes  Users' Mathboxes
(29429-42879)
 

Theorem List for Metamath Proof Explorer - 25301-25400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempntrsumbnd2 25301* A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 14-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))       𝑐 ∈ ℝ+𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
 
Theoremselbergr 25302* Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.2 of [Shapiro], p. 428. (Contributed by Mario Carneiro, 16-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))       (𝑥 ∈ ℝ+ ↦ ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) ∈ 𝑂(1)
 
Theoremselberg3r 25303* Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.8 of [Shapiro], p. 429. (Contributed by Mario Carneiro, 30-May-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))       (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ 𝑂(1)
 
Theoremselberg4r 25304* Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.11 of [Shapiro], p. 430. (Contributed by Mario Carneiro, 30-May-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))       (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (𝑅‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1)
 
Theoremselberg34r 25305* The sum of selberg3r 25303 and selberg4r 25304. (Contributed by Mario Carneiro, 31-May-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))       (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
 
Theorempntsval 25306* Define the "Selberg function", whose asymptotic behavior is the content of selberg 25282. (Contributed by Mario Carneiro, 31-May-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))       (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
 
Theorempntsf 25307* Functionality of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))       𝑆:ℝ⟶ℝ
 
Theoremselbergs 25308* Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))       (𝑥 ∈ ℝ+ ↦ (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
 
Theoremselbergsb 25309* Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))       𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘(((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐
 
Theorempntsval2 25310* The Selberg function can be expressed using the convolution product of the von Mangoldt function with itself. (Contributed by Mario Carneiro, 31-May-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))       (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
 
Theorempntrlog2bndlem1 25311* The sum of selberg3r 25303 and selberg4r 25304. (Contributed by Mario Carneiro, 31-May-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))    &   𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))       (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1)
 
Theorempntrlog2bndlem2 25312* Lemma for pntrlog2bnd 25318. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))    &   𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑 → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦))       (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
 
Theorempntrlog2bndlem3 25313* Lemma for pntrlog2bnd 25318. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))    &   𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴)       (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
 
Theorempntrlog2bndlem4 25314* Lemma for pntrlog2bnd 25318. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))    &   𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))       (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)
 
Theorempntrlog2bndlem5 25315* Lemma for pntrlog2bnd 25318. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))    &   𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)       (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
 
Theorempntrlog2bndlem6a 25316* Lemma for pntrlog2bndlem6 25317. (Contributed by Mario Carneiro, 7-Jun-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))    &   𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 ≤ 𝐴)       ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
 
Theorempntrlog2bndlem6 25317* Lemma for pntrlog2bnd 25318. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))    &   𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 ≤ 𝐴)       (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
 
Theorempntrlog2bnd 25318* A bound on 𝑅(𝑥)log↑2(𝑥). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))       ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐)
 
Theorempntpbnd1a 25319* Lemma for pntpbnd 25322. (Contributed by Mario Carneiro, 11-Apr-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐸 ∈ (0(,)1))    &   𝑋 = (exp‘(2 / 𝐸))    &   (𝜑𝑌 ∈ (𝑋(,)+∞))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → (𝑌 < 𝑁𝑁 ≤ (𝐾 · 𝑌)))    &   (𝜑 → (abs‘(𝑅𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅𝑁))))       (𝜑 → (abs‘((𝑅𝑁) / 𝑁)) ≤ 𝐸)
 
Theorempntpbnd1 25320* Lemma for pntpbnd 25322. (Contributed by Mario Carneiro, 11-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐸 ∈ (0(,)1))    &   𝑋 = (exp‘(2 / 𝐸))    &   (𝜑𝑌 ∈ (𝑋(,)+∞))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)    &   𝐶 = (𝐴 + 2)    &   (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))    &   (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))       (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
 
Theorempntpbnd2 25321* Lemma for pntpbnd 25322. (Contributed by Mario Carneiro, 11-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐸 ∈ (0(,)1))    &   𝑋 = (exp‘(2 / 𝐸))    &   (𝜑𝑌 ∈ (𝑋(,)+∞))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)    &   𝐶 = (𝐴 + 2)    &   (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))    &   (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))        ¬ 𝜑
 
Theorempntpbnd 25322* Lemma for pnt 25348. Establish smallness of 𝑅 at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))       𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)
 
Theorempntibndlem1 25323 Lemma for pntibnd 25327. (Contributed by Mario Carneiro, 10-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   𝐿 = ((1 / 4) / (𝐴 + 3))       (𝜑𝐿 ∈ (0(,)1))
 
Theorempntibndlem2a 25324* Lemma for pntibndlem2 25325. (Contributed by Mario Carneiro, 7-Jun-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   𝐿 = ((1 / 4) / (𝐴 + 3))    &   (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)    &   𝐾 = (exp‘(𝐵 / (𝐸 / 2)))    &   𝐶 = ((2 · 𝐵) + (log‘2))    &   (𝜑𝐸 ∈ (0(,)1))    &   (𝜑𝑍 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℕ)       ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
 
Theorempntibndlem2 25325* Lemma for pntibnd 25327. The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   𝐿 = ((1 / 4) / (𝐴 + 3))    &   (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)    &   𝐾 = (exp‘(𝐵 / (𝐸 / 2)))    &   𝐶 = ((2 · 𝐵) + (log‘2))    &   (𝜑𝐸 ∈ (0(,)1))    &   (𝜑𝑍 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇 ∈ ℝ+)    &   (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑇 · (𝑥 / (log‘𝑥)))))    &   𝑋 = ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍)    &   (𝜑𝑀 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))    &   (𝜑𝑌 ∈ (𝑋(,)+∞))    &   (𝜑 → ((𝑌 < 𝑁𝑁 ≤ ((𝑀 / 2) · 𝑌)) ∧ (abs‘((𝑅𝑁) / 𝑁)) ≤ (𝐸 / 2)))       (𝜑 → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
 
Theorempntibndlem3 25326* Lemma for pntibnd 25327. Package up pntibndlem2 25325 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   𝐿 = ((1 / 4) / (𝐴 + 3))    &   (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)    &   𝐾 = (exp‘(𝐵 / (𝐸 / 2)))    &   𝐶 = ((2 · 𝐵) + (log‘2))    &   (𝜑𝐸 ∈ (0(,)1))    &   (𝜑𝑍 ∈ ℝ+)    &   (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))       (𝜑 → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
 
Theorempntibnd 25327* Lemma for pnt 25348. Establish smallness of 𝑅 on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))       𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)
 
Theorempntlemd 25328 Lemma for pnt 25348. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))       (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
 
Theorempntlemc 25329* Lemma for pnt 25348. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))       (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
 
Theorempntlema 25330* Lemma for pnt 25348. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))       (𝜑𝑊 ∈ ℝ+)
 
Theorempntlemb 25331* Lemma for pnt 25348. Unpack all the lower bounds contained in 𝑊, in the form they will be used. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑍 is x. (Contributed by Mario Carneiro, 13-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑𝑍 ∈ (𝑊[,)+∞))       (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
 
Theorempntlemg 25332* Lemma for pnt 25348. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑀 is j^* and 𝑁 is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑𝑍 ∈ (𝑊[,)+∞))    &   𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)    &   𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))       (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
 
Theorempntlemh 25333* Lemma for pnt 25348. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑𝑍 ∈ (𝑊[,)+∞))    &   𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)    &   𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))       ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
 
Theorempntlemn 25334* Lemma for pnt 25348. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑𝑍 ∈ (𝑊[,)+∞))    &   𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)    &   𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))    &   (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)       ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽)))
 
Theorempntlemq 25335* Lemma for pntlemj 25337. (Contributed by Mario Carneiro, 7-Jun-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑𝑍 ∈ (𝑊[,)+∞))    &   𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)    &   𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))    &   (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)    &   (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))    &   𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))    &   (𝜑𝑉 ∈ ℝ+)    &   (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))    &   (𝜑𝐽 ∈ (𝑀..^𝑁))    &   𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))       (𝜑𝐼𝑂)
 
Theorempntlemr 25336* Lemma for pntlemj 25337. (Contributed by Mario Carneiro, 7-Jun-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑𝑍 ∈ (𝑊[,)+∞))    &   𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)    &   𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))    &   (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)    &   (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))    &   𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))    &   (𝜑𝑉 ∈ ℝ+)    &   (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))    &   (𝜑𝐽 ∈ (𝑀..^𝑁))    &   𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))       (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((#‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
 
Theorempntlemj 25337* Lemma for pnt 25348. The induction step. Using pntibnd 25327, we find an interval in 𝐾𝐽...𝐾↑(𝐽 + 1) which is sufficiently large and has a much smaller value, 𝑅(𝑧) / 𝑧𝐸 (instead of our original bound 𝑅(𝑧) / 𝑧𝑈). (Contributed by Mario Carneiro, 13-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑𝑍 ∈ (𝑊[,)+∞))    &   𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)    &   𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))    &   (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)    &   (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))    &   𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))    &   (𝜑𝑉 ∈ ℝ+)    &   (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))    &   (𝜑𝐽 ∈ (𝑀..^𝑁))    &   𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))       (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
 
Theorempntlemi 25338* Lemma for pnt 25348. Eliminate some assumptions from pntlemj 25337. (Contributed by Mario Carneiro, 13-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑𝑍 ∈ (𝑊[,)+∞))    &   𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)    &   𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))    &   (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)    &   (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))    &   𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))       ((𝜑𝐽 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
 
Theorempntlemf 25339* Lemma for pnt 25348. Add up the pieces in pntlemi 25338 to get an estimate slightly better than the naive lower bound 0. (Contributed by Mario Carneiro, 13-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑𝑍 ∈ (𝑊[,)+∞))    &   𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)    &   𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))    &   (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)    &   (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))       (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
 
Theorempntlemk 25340* Lemma for pnt 25348. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑𝑍 ∈ (𝑊[,)+∞))    &   𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)    &   𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))    &   (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)    &   (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))       (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
 
Theorempntlemo 25341* Lemma for pnt 25348. Combine all the estimates to establish a smaller eventual bound on 𝑅(𝑍) / 𝑍. (Contributed by Mario Carneiro, 14-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑𝑍 ∈ (𝑊[,)+∞))    &   𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)    &   𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))    &   (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)    &   (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))    &   (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)       (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
 
Theorempntleme 25342* Lemma for pnt 25348. Package up pntlemo 25341 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))    &   (𝜑𝐶 ∈ ℝ+)    &   𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))    &   (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)    &   (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))    &   (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)       (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
 
Theorempntlem3 25343* Lemma for pnt 25348. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.) (Proof shortened by AV, 27-Sep-2020.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)    &   𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}    &   (𝜑𝐶 ∈ ℝ+)    &   ((𝜑𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)       (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
 
Theorempntlemp 25344* Lemma for pnt 25348. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))    &   (𝜑𝑈 ∈ ℝ+)    &   (𝜑𝑈𝐴)    &   𝐸 = (𝑈 / 𝐷)    &   𝐾 = (exp‘(𝐵 / 𝐸))    &   (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))    &   (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)       (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
 
Theorempntleml 25345* Lemma for pnt 25348. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))    &   (𝜑𝐴 ∈ ℝ+)    &   (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐿 ∈ (0(,)1))    &   𝐷 = (𝐴 + 1)    &   𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))    &   (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))       (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
 
Theorempnt3 25346 The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.)
(𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1
 
Theorempnt2 25347 The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.)
(𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1
 
Theorempnt 25348 The Prime Number Theorem: the number of prime numbers less than 𝑥 tends asymptotically to 𝑥 / log(𝑥) as 𝑥 goes to infinity. This is Metamath 100 proof #5. (Contributed by Mario Carneiro, 1-Jun-2016.)
(𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1
 
14.4.14  Ostrowski's theorem
 
Theoremabvcxp 25349* Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &   𝐺 = (𝑥𝐵 ↦ ((𝐹𝑥)↑𝑐𝑆))       ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺𝐴)
 
Theorempadicfval 25350* Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))       (𝑃 ∈ ℙ → (𝐽𝑃) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥)))))
 
Theorempadicval 25351* Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))       ((𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ) → ((𝐽𝑃)‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋))))
 
Theoremostth2lem1 25352* Lemma for ostth2 25371, although it is just a simple statement about exponentials which does not involve any specifics of ostth2 25371. If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, 𝑛𝑜(𝐴𝑛) for any 1 < 𝐴. (Contributed by Mario Carneiro, 10-Sep-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ≤ (𝑛 · 𝐵))       (𝜑𝐴 ≤ 1)
 
Theoremqrngbas 25353 The base set of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝑄 = (ℂflds ℚ)       ℚ = (Base‘𝑄)
 
Theoremqdrng 25354 The rationals form a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝑄 = (ℂflds ℚ)       𝑄 ∈ DivRing
 
Theoremqrng0 25355 The zero element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝑄 = (ℂflds ℚ)       0 = (0g𝑄)
 
Theoremqrng1 25356 The unit element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝑄 = (ℂflds ℚ)       1 = (1r𝑄)
 
Theoremqrngneg 25357 The additive inverse in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝑄 = (ℂflds ℚ)       (𝑋 ∈ ℚ → ((invg𝑄)‘𝑋) = -𝑋)
 
Theoremqrngdiv 25358 The division operation in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝑄 = (ℂflds ℚ)       ((𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0) → (𝑋(/r𝑄)𝑌) = (𝑋 / 𝑌))
 
Theoremqabvle 25359 By using induction on 𝑁, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)       ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)
 
Theoremqabvexp 25360 Induct the product rule abvmul 18877 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)       ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))
 
Theoremostthlem1 25361* Lemma for ostth 25373. If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝐴)    &   ((𝜑𝑛 ∈ (ℤ‘2)) → (𝐹𝑛) = (𝐺𝑛))       (𝜑𝐹 = 𝐺)
 
Theoremostthlem2 25362* Lemma for ostth 25373. Refine ostthlem1 25361 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝐴)    &   ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = (𝐺𝑝))       (𝜑𝐹 = 𝐺)
 
Theoremqabsabv 25363 The regular absolute value function on the rationals is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 9-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)       (abs ↾ ℚ) ∈ 𝐴
 
Theorempadicabv 25364* The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))))       ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹𝐴)
 
Theorempadicabvf 25365* The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))       𝐽:ℙ⟶𝐴
 
Theorempadicabvcxp 25366* All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))       ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
 
Theoremostth1 25367* - Lemma for ostth 25373: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 18877 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 25361 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))    &   𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))    &   (𝜑𝐹𝐴)    &   (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))    &   (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹𝑛) < 1)       (𝜑𝐹 = 𝐾)
 
Theoremostth2lem2 25368* Lemma for ostth2 25371. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))    &   𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))    &   (𝜑𝐹𝐴)    &   (𝜑𝑁 ∈ (ℤ‘2))    &   (𝜑 → 1 < (𝐹𝑁))    &   𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))    &   (𝜑𝑀 ∈ (ℤ‘2))    &   𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))    &   𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))       ((𝜑𝑋 ∈ ℕ0𝑌 ∈ (0...((𝑀𝑋) − 1))) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))
 
Theoremostth2lem3 25369* Lemma for ostth2 25371. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))    &   𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))    &   (𝜑𝐹𝐴)    &   (𝜑𝑁 ∈ (ℤ‘2))    &   (𝜑 → 1 < (𝐹𝑁))    &   𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))    &   (𝜑𝑀 ∈ (ℤ‘2))    &   𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))    &   𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))    &   𝑈 = ((log‘𝑁) / (log‘𝑀))       ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑋) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
 
Theoremostth2lem4 25370* Lemma for ostth2 25371. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))    &   𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))    &   (𝜑𝐹𝐴)    &   (𝜑𝑁 ∈ (ℤ‘2))    &   (𝜑 → 1 < (𝐹𝑁))    &   𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))    &   (𝜑𝑀 ∈ (ℤ‘2))    &   𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))    &   𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))    &   𝑈 = ((log‘𝑁) / (log‘𝑀))       (𝜑 → (1 < (𝐹𝑀) ∧ 𝑅𝑆))
 
Theoremostth2 25371* - Lemma for ostth 25373: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))    &   𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))    &   (𝜑𝐹𝐴)    &   (𝜑𝑁 ∈ (ℤ‘2))    &   (𝜑 → 1 < (𝐹𝑁))    &   𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))       (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
 
Theoremostth3 25372* - Lemma for ostth 25373: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))    &   𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))    &   (𝜑𝐹𝐴)    &   (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (𝐹𝑃) < 1)    &   𝑅 = -((log‘(𝐹𝑃)) / (log‘𝑃))    &   𝑆 = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃))       (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
 
Theoremostth 25373* Ostrowski's theorem, which classifies all absolute values on . Any such absolute value must either be the trivial absolute value 𝐾, a constant exponent 0 < 𝑎 ≤ 1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝑄 = (ℂflds ℚ)    &   𝐴 = (AbsVal‘𝑄)    &   𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))    &   𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))       (𝐹𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
 
PART 15  ELEMENTARY GEOMETRY

This part develops elementary geometry based on Tarski's axioms, following [Schwabhauser]. Tarski's geometry is a first-order theory with one sort, the "points". It has two primitive notions, the ternary predicate of "betweenness" and the quaternary predicate of "congruence". To adapt this theory to the framework of set.mm, and to be able to talk of *a* Tarski structure as a space satisfying the given axioms, we use the following definition, stated informally:

A Tarski structure 𝑓 is a set (of points) (Base‘𝑓) together with functions (Itv‘𝑓) and (dist‘𝑓) on ((Base‘𝑓) × (Base‘𝑓)) satisfying certain axioms (given in the definitions df-trkg 25397 et sequentes). This allows us to treat a Tarski structure as a special kind of extensible structure (see df-struct 15906).

The translation to and from Tarski's treatment is as follows (given, again, informally).

Suppose that one is given an extensible structure 𝑓. One defines a betweenness ternary predicate Btw by positing that, for any 𝑥, 𝑦, 𝑧 ∈ (Base‘𝑓), one has "Btw 𝑥𝑦𝑧 " if and only if 𝑦𝑥(Itv‘𝑓)𝑧, and a congruence quaternary predicate Congr by positing that, for any 𝑥, 𝑦, 𝑧, 𝑡 ∈ (Base‘𝑓), one has "Congr 𝑥𝑦𝑧𝑡 " if and only if 𝑥(dist‘𝑓)𝑦 = 𝑧(dist‘𝑓)𝑡. It is easy to check that if 𝑓 satisfies our Tarski axioms, then Btw and Congr satisfy Tarski's Tarski axioms when (Base‘𝑓) is interpreted as the universe of discourse.

Conversely, suppose that one is given a set 𝑎, a ternary predicate Btw, and a quaternary predicate Congr. One defines the extensible structure 𝑓 such that (Base‘𝑓) is 𝑎, and (Itv‘𝑓) is the function which associates with each 𝑥, 𝑦⟩ ∈ (𝑎 × 𝑎) the set of points 𝑧𝑎 such that "Btw 𝑥𝑧𝑦", and (dist‘𝑓) is the function which associates with each 𝑥, 𝑦⟩ ∈ (𝑎 × 𝑎) the set of ordered pairs 𝑧, 𝑡⟩ ∈ (𝑎 × 𝑎) such that "Congr 𝑥𝑦𝑧𝑡". It is easy to check that if Btw and Congr satisfy Tarski's Tarski axioms when 𝑎 is interpreted as the universe of discourse, then 𝑓 satisfies our Tarski axioms.

We intentionally choose to represent congruence (without loss of generality) as 𝑥(dist‘𝑓)𝑦 = 𝑧(dist‘𝑓)𝑡 instead of "Congr 𝑥𝑦𝑧𝑡", as it is more convenient. It is always possible to define dist for any particular geometry to produce equal results when conguence is desired, and in many cases there is an obvious interpretation of "distance" between two points that can be useful in other situations. A similar representation is used in Axiom A1 of [Beeson2016] p. 5, which discusses how a large number of formalized proofs were found in Tarskian Geometry using OTTER. Their detailed proofs in Tarski Geometry, along with other information, are available at http://www.michaelbeeson.com/research/FormalTarski/.

Most theorems are in deduction form, as this is a very general, simple, and convenient format to use in Metamath. An assertion in deduction form can be easily converted into an assertion in inference form (removing the antecedents 𝜑) by insert a ⊤ → in each hypothesis, using a1i 11, then using trud 1533 to remove the final ⊤ → prefix. In some cases we represent, without loss of generality, an implication antecedent in [Schwabhauser] as a hypothesis. The implication can be retrieved from the by using simpr 476, the theorem as stated, and ex 449.

For descriptions of individual axioms, we refer to the specific definitions below. A particular feature of Tarski's axioms is modularity, so by using various subsets of the set of axioms, we can define the classes of "absolute dimensionless Tarski structures" (df-trkg 25397), of "Euclidean dimensionless Tarski structures" (df-trkge 25395) and of "Tarski structures of dimension no less than N" (df-trkgld 25396).

The first section is devoted to the definitions of these various structures. The second section ("Tarskian geometry") develops the synthetic treatment of geometry. The remaining sections prove that real Euclidean spaces and complex Hilbert spaces, with intended interpretations, are Euclidean Tarski structures.

Most of the work in this part is due to Thierry Arnoux, with earlier work by Mario Carneiro and Scott Fenton. See also the credits in the comment of each statement.

 
15.1  Definition and Tarski's Axioms of Geometry
 
Syntaxcstrkg 25374 Extends class notation with the class of Tarski geometries.
class TarskiG
 
Syntaxcstrkgc 25375 Extends class notation with the class of geometries fulfilling the congruence axioms.
class TarskiGC
 
Syntaxcstrkgb 25376 Extends class notation with the class of geometries fulfilling the betweenness axioms.
class TarskiGB
 
Syntaxcstrkgcb 25377 Extends class notation with the class of geometries fulfilling the congruence and betweenness axioms.
class TarskiGCB
 
Syntaxcstrkgld 25378 Extends class notation with the relation for geometries fulfilling the lower dimension axioms.
class DimTarskiG
 
Syntaxcstrkge 25379 Extends class notation with the class of geometries fulfilling Euclid's axiom.
class TarskiGE
 
Syntaxcitv 25380 Declare the syntax for the Interval (segment) index extractor.
class Itv
 
Syntaxclng 25381 Declare the syntax for the Line function.
class LineG
 
Definitiondf-itv 25382 Define the Interval (segment) index extractor for Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017.)
Itv = Slot 16
 
Definitiondf-lng 25383 Define the line index extractor for geometries. (Contributed by Thierry Arnoux, 27-Mar-2019.)
LineG = Slot 17
 
Theoremitvndx 25384 Index value of the Interval (segment) slot. Use ndxarg 15929. (Contributed by Thierry Arnoux, 24-Aug-2017.)
(Itv‘ndx) = 16
 
Theoremlngndx 25385 Index value of the "line" slot. Use ndxarg 15929. (Contributed by Thierry Arnoux, 27-Mar-2019.)
(LineG‘ndx) = 17
 
Theoremitvid 25386 Utility theorem: index-independent form of df-itv 25382. (Contributed by Thierry Arnoux, 24-Aug-2017.)
Itv = Slot (Itv‘ndx)
 
Theoremlngid 25387 Utility theorem: index-independent form of df-lng 25383. (Contributed by Thierry Arnoux, 27-Mar-2019.)
LineG = Slot (LineG‘ndx)
 
Theoremtrkgstr 25388 Functionality of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.)
𝑊 = {⟨(Base‘ndx), 𝑈⟩, ⟨(dist‘ndx), 𝐷⟩, ⟨(Itv‘ndx), 𝐼⟩}       𝑊 Struct ⟨1, 16⟩
 
Theoremtrkgbas 25389 The base set of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.)
𝑊 = {⟨(Base‘ndx), 𝑈⟩, ⟨(dist‘ndx), 𝐷⟩, ⟨(Itv‘ndx), 𝐼⟩}       (𝑈𝑉𝑈 = (Base‘𝑊))
 
Theoremtrkgdist 25390 The measure of a distance in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.)
𝑊 = {⟨(Base‘ndx), 𝑈⟩, ⟨(dist‘ndx), 𝐷⟩, ⟨(Itv‘ndx), 𝐼⟩}       (𝐷𝑉𝐷 = (dist‘𝑊))
 
Theoremtrkgitv 25391 The congruence relation in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.)
𝑊 = {⟨(Base‘ndx), 𝑈⟩, ⟨(dist‘ndx), 𝐷⟩, ⟨(Itv‘ndx), 𝐼⟩}       (𝐼𝑉𝐼 = (Itv‘𝑊))
 
Definitiondf-trkgc 25392* Define the class of geometries fulfilling the congruence axioms of reflexivity, identity and transitivity. These are axioms A1 to A3 of [Schwabhauser] p. 10. With our distance based notation for congruence, transitivity of congruence boils down to transitivity of equality and is already given by eqtr 2670, so it is not listed in this definition. (Contributed by Thierry Arnoux, 24-Aug-2017.)
TarskiGC = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))}
 
Definitiondf-trkgb 25393* Define the class of geometries fulfilling the 3 betweenness axioms in Tarski's Axiomatization of Geometry: identity, Axiom A6 of [Schwabhauser] p. 11, axiom of Pasch, Axiom A7 of [Schwabhauser] p. 12, and continuity, Axiom A11 of [Schwabhauser] p. 13. (Contributed by Thierry Arnoux, 24-Aug-2017.)
TarskiGB = {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](∀𝑥𝑝𝑦𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑝𝑡 ∈ 𝒫 𝑝(∃𝑎𝑝𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏𝑝𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝑖𝑦)))}
 
Definitiondf-trkgcb 25394* Define the class of geometries fulfilling the five segment axiom, Axiom A5 of [Schwabhauser] p. 11, and segment construction axiom, Axiom A4 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 14-Mar-2019.)
TarskiGCB = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 (((𝑥𝑦𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))}
 
Definitiondf-trkge 25395* Define the class of geometries fulfilling Euclid's axiom, Axiom A10 of [Schwabhauser] p. 13. (Contributed by Thierry Arnoux, 14-Mar-2019.)
TarskiGE = {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖]𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))}
 
Definitiondf-trkgld 25396* Define the class of geometries fulfilling the lower dimension axiom for dimension 𝑛. For such geometries, there are three non-colinear points that are equidistant from 𝑛 − 1 distinct points. Derived from remarks in Tarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013.) (Revised by Thierry Arnoux, 23-Nov-2019.)
DimTarskiG≥ = {⟨𝑔, 𝑛⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]𝑓(𝑓:(1..^𝑛)–1-1𝑝 ∧ ∃𝑥𝑝𝑦𝑝𝑧𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))}
 
Definitiondf-trkg 25397* Define the class of Tarski geometries. A Tarski geometry is a set of points, equipped with a betweenness relation (denoting that a point lies on a line segment between two other points) and a congruence relation (denoting equality of line segment lengths). Here, we are using the following:
  • for congruence, (𝑥 𝑦) = (𝑧 𝑤) where = (dist‘𝑊)
  • for betweenness, 𝑦 ∈ (𝑥𝐼𝑧), where 𝐼 = (Itv‘𝑊)
With this definition, the axiom A2 is actually equivalent to the transitivity of addition, eqtrd 2685.

Tarski originally had more axioms, but later reduced his list to 11:

  • A1 A kind of reflexivity for the congruence relation (TarskiGC)
  • A2 Transitivity for the congruence relation (TarskiGC)
  • A3 Identity for the congruence relation (TarskiGC)
  • A4 Axiom of segment construction (TarskiGCB)
  • A5 5-segment axiom (TarskiGCB)
  • A6 Identity for the betweenness relation (TarskiGB)
  • A7 Axiom of Pasch (TarskiGB)
  • A8 Lower dimension axiom (DimTarskiG≥‘2)
  • A9 Upper dimension axiom (V ∖ (DimTarskiG≥‘3))
  • A10 Euclid's axiom (TarskiGE)
  • A11 Axiom of continuity (TarskiGB)
Our definition is split into 5 parts:
  • congruence axioms TarskiGC (which metric spaces fulfill)
  • betweenness axioms TarskiGB
  • congruence and betweenness axioms TarskiGCB
  • upper and lower dimension axioms DimTarskiG
  • axiom of Euclid / parallel postulate TarskiGE

So our definition of a Tarskian Geometry includes the 3 axioms for the quaternary congruence relation (A1, A2, A3), the 3 axioms for the ternary betweenness relation (A6, A7, A11), and the 2 axioms of compatibility of the congruence and the betweenness relations (A4,A5).

It does not include Euclid's axiom A10, nor the 2-dimensional axioms A8 (Lower dimension axiom) and A9 (Upper dimension axiom) so the number of dimensions of the geometry it formalizes is not constrained.

Considering A2 as one of the 3 axioms for the quaternary congruence relation is somewhat conventional, because the transitivity of the congruence relation is automatically given by our choice to take the distance as this congruence relation in our definition of Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017.) (Revised by Thierry Arnoux, 27-Apr-2019.)

TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
 
Theoremistrkgc 25398* Property of being a Tarski geometry - congruence part. (Contributed by Thierry Arnoux, 14-Mar-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)       (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
 
Theoremistrkgb 25399* Property of being a Tarski geometry - betweenness part. (Contributed by Thierry Arnoux, 14-Mar-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)       (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
 
Theoremistrkgcb 25400* Property of being a Tarski geometry - congruence and betweenness part. (Contributed by Thierry Arnoux, 14-Mar-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)       (𝐺 ∈ TarskiGCB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑣𝑃 (((𝑥𝑦𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 𝑦) = (𝑎 𝑏) ∧ (𝑦 𝑧) = (𝑏 𝑐)) ∧ ((𝑥 𝑢) = (𝑎 𝑣) ∧ (𝑦 𝑢) = (𝑏 𝑣)))) → (𝑧 𝑢) = (𝑐 𝑣)) ∧ ∀𝑥𝑃𝑦𝑃𝑎𝑃𝑏𝑃𝑧𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 𝑧) = (𝑎 𝑏)))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
  Copyright terms: Public domain < Previous  Next >