![]() |
Metamath
Proof Explorer Theorem List (p. 249 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lgamgulmlem2 24801* | Lemma for lgamgulm 24806. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → (2 · 𝑅) ≤ 𝑁) ⇒ ⊢ (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)))) | ||
Theorem | lgamgulmlem3 24802* | Lemma for lgamgulm 24806. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → (2 · 𝑅) ≤ 𝑁) ⇒ ⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2)))) | ||
Theorem | lgamgulmlem4 24803* | Lemma for lgamgulm 24806. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ ) | ||
Theorem | lgamgulmlem5 24804* | Lemma for lgamgulm 24806. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈)) → (abs‘((𝐺‘𝑛)‘𝑦)) ≤ (𝑇‘𝑛)) | ||
Theorem | lgamgulmlem6 24805* | The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ (𝜑 → (seq1( ∘𝑓 + , 𝐺) ∈ dom (⇝𝑢‘𝑈) ∧ (seq1( ∘𝑓 + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂) → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟))) | ||
Theorem | lgamgulm 24806* | The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → seq1( ∘𝑓 + , 𝐺) ∈ dom (⇝𝑢‘𝑈)) | ||
Theorem | lgamgulm2 24807* | Rewrite the limit of the sequence 𝐺 in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → (∀𝑧 ∈ 𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))) | ||
Theorem | lgambdd 24808* | The log-Gamma function is bounded on the region 𝑈. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟) | ||
Theorem | lgamucov 24809* | The 𝑈 regions used in the proof of lgamgulm 24806 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈)) | ||
Theorem | lgamucov2 24810* | The 𝑈 regions used in the proof of lgamgulm 24806 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ 𝑈) | ||
Theorem | lgamcvglem 24811* | Lemma for lgamf 24813 and lgamcvg 24825. (Contributed by Mario Carneiro, 8-Jul-2017.) |
⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) ⇒ ⊢ (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))) | ||
Theorem | lgamcl 24812 | The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 8-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ) | ||
Theorem | lgamf 24813 | The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ log Γ:(ℂ ∖ (ℤ ∖ ℕ))⟶ℂ | ||
Theorem | gamf 24814 | The Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ Γ:(ℂ ∖ (ℤ ∖ ℕ))⟶ℂ | ||
Theorem | gamcl 24815 | The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℂ) | ||
Theorem | eflgam 24816 | The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) | ||
Theorem | gamne0 24817 | The Gamma function is never zero. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ≠ 0) | ||
Theorem | igamval 24818 | Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) | ||
Theorem | igamz 24819 | Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017.) |
⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0) | ||
Theorem | igamgam 24820 | Value of the inverse Gamma function in terms of the Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (1 / (Γ‘𝐴))) | ||
Theorem | igamlgam 24821 | Value of the inverse Gamma function in terms of the log-Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (exp‘-(log Γ‘𝐴))) | ||
Theorem | igamf 24822 | Closure of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
⊢ 1/Γ:ℂ⟶ℂ | ||
Theorem | igamcl 24823 | Closure of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) ∈ ℂ) | ||
Theorem | gamigam 24824 | The Gamma function is the inverse of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) = (1 / (1/Γ‘𝐴))) | ||
Theorem | lgamcvg 24825* | The series 𝐺 converges to log Γ(𝐴) + log(𝐴). (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) | ||
Theorem | lgamcvg2 24826* | The series 𝐺 converges to log Γ(𝐴 + 1). (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ⇝ (log Γ‘(𝐴 + 1))) | ||
Theorem | gamcvg 24827* | The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) | ||
Theorem | lgamp1 24828 | The functional equation of the (log) Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘(𝐴 + 1)) = ((log Γ‘𝐴) + (log‘𝐴))) | ||
Theorem | gamp1 24829 | The functional equation of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘(𝐴 + 1)) = ((Γ‘𝐴) · 𝐴)) | ||
Theorem | gamcvg2lem 24830* | Lemma for gamcvg2 24831. (Contributed by Mario Carneiro, 10-Jul-2017.) |
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) ⇒ ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹)) | ||
Theorem | gamcvg2 24831* | An infinite product expression for the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( · , 𝐹) ⇝ ((Γ‘𝐴) · 𝐴)) | ||
Theorem | regamcl 24832 | The Gamma function is real for real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℝ) | ||
Theorem | relgamcl 24833 | The log-Gamma function is real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ ℝ+ → (log Γ‘𝐴) ∈ ℝ) | ||
Theorem | rpgamcl 24834 | The log-Gamma function is positive real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ ℝ+ → (Γ‘𝐴) ∈ ℝ+) | ||
Theorem | lgam1 24835 | The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (log Γ‘1) = 0 | ||
Theorem | gam1 24836 | The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (Γ‘1) = 1 | ||
Theorem | facgam 24837 | The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) = (Γ‘(𝑁 + 1))) | ||
Theorem | gamfac 24838 | The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝑁 ∈ ℕ → (Γ‘𝑁) = (!‘(𝑁 − 1))) | ||
Theorem | wilthlem1 24839 | The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in ℤ / 𝑃ℤ are 1 and -1≡𝑃 − 1. (Note that from prmdiveq 15538, (𝑁↑(𝑃 − 2)) mod 𝑃 is the modular inverse of 𝑁 in ℤ / 𝑃ℤ. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1)))) | ||
Theorem | wilthlem2 24840* |
Lemma for wilth 24842: induction step. The "hand proof"
version of this
theorem works by writing out the list of all numbers from 1 to
𝑃
− 1 in pairs such that a number is paired with its inverse.
Every number has a unique inverse different from itself except 1
and 𝑃 − 1, and so each pair
multiplies to 1, and 1 and
𝑃
− 1≡-1 multiply to -1, so the full
product is equal
to -1. Here we make this precise by doing the
product pair by
pair.
The induction hypothesis says that every subset 𝑆 of 1...(𝑃 − 1) that is closed under inverse (i.e. all pairs are matched up) and contains 𝑃 − 1 multiplies to -1 mod 𝑃. Given such a set, we take out one element 𝑧 ≠ 𝑃 − 1. If there are no such elements, then 𝑆 = {𝑃 − 1} which forms the base case. Otherwise, 𝑆 ∖ {𝑧, 𝑧↑-1} is also closed under inverse and contains 𝑃 − 1, so the induction hypothesis says that this equals -1; and the remaining two elements are either equal to each other, in which case wilthlem1 24839 gives that 𝑧 = 1 or 𝑃 − 1, and we've already excluded the second case, so the product gives 1; or 𝑧 ≠ 𝑧↑-1 and their product is 1. In either case the accumulated product is unaffected. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.) |
⊢ 𝑇 = (mulGrp‘ℂfld) & ⊢ 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)} & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑆 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝐴 (𝑠 ⊊ 𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ⇒ ⊢ (𝜑 → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)) | ||
Theorem | wilthlem3 24841* | Lemma for wilth 24842. Here we round out the argument of wilthlem2 24840 with the final step of the induction. The induction argument shows that every subset of 1...(𝑃 − 1) that is closed under inverse and contains 𝑃 − 1 multiplies to -1 mod 𝑃, and clearly 1...(𝑃 − 1) itself is such a set. Thus, the product of all the elements is -1, and all that is left is to translate the group sum notation (which we used for its unordered summing capabilities) into an ordered sequence to match the definition of the factorial. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.) |
⊢ 𝑇 = (mulGrp‘ℂfld) & ⊢ 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)} ⇒ ⊢ (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) | ||
Theorem | wilth 24842 | Wilson's theorem. A number is prime iff it is greater or equal to 2 and (𝑁 − 1)! is congruent to -1, mod 𝑁, or alternatively if 𝑁 divides (𝑁 − 1)! + 1. In this part of the proof we show the relatively simple reverse implication; see wilthlem3 24841 for the forward implication. This is Metamath 100 proof #51. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
⊢ (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1))) | ||
Theorem | wilthimp 24843 | The forward implication of Wilson's theorem wilth 24842 (see wilthlem3 24841), expressed using the modulo operation: For any prime 𝑝 we have (𝑝 − 1)!≡ − 1 (mod 𝑝), see theorem 5.24 in [ApostolNT] p. 116. (Contributed by AV, 21-Jul-2021.) |
⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) | ||
Theorem | ftalem1 24844* | Lemma for fta 24851: "growth lemma". There exists some 𝑟 such that 𝐹 is arbitrarily close in proportion to its dominant term. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) | ||
Theorem | ftalem2 24845* | Lemma for fta 24851. There exists some 𝑟 such that 𝐹 has magnitude greater than 𝐹(0) outside the closed ball B(0,r). (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)) & ⊢ 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴‘𝑁)) / 2)) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥)))) | ||
Theorem | ftalem3 24846* | Lemma for fta 24851. There exists a global minimum of the function abs ∘ 𝐹. The proof uses a circle of radius 𝑟 where 𝑟 is the value coming from ftalem1 24844; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐷 = {𝑦 ∈ ℂ ∣ (abs‘𝑦) ≤ 𝑅} & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℂ (𝑅 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥))) | ||
Theorem | ftalem4 24847* | Lemma for fta 24851: Closure of the auxiliary variables for ftalem5 24848. (Contributed by Mario Carneiro, 20-Sep-2014.) (Revised by AV, 28-Sep-2020.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐹‘0) ≠ 0) & ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) & ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) & ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) & ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) ⇒ ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) | ||
Theorem | ftalem5 24848* | Lemma for fta 24851: Main proof. We have already shifted the minimum found in ftalem3 24846 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let 𝐾 be the lowest term in the polynomial that is nonzero, and let 𝑇 be a 𝐾-th root of -𝐹(0) / 𝐴(𝐾). Then an evaluation of 𝐹(𝑇𝑋) where 𝑋 is a sufficiently small positive number yields 𝐹(0) for the first term and -𝐹(0) · 𝑋↑𝐾 for the 𝐾-th term, and all higher terms are bounded because 𝑋 is small. Thus, abs(𝐹(𝑇𝑋)) ≤ abs(𝐹(0))(1 − 𝑋↑𝐾) < abs(𝐹(0)), in contradiction to our choice of 𝐹(0) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014.) (Revised by AV, 28-Sep-2020.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐹‘0) ≠ 0) & ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) & ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) & ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) & ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹‘𝑥)) < (abs‘(𝐹‘0))) | ||
Theorem | ftalem6 24849* | Lemma for fta 24851: Discharge the auxiliary variables in ftalem5 24848. (Contributed by Mario Carneiro, 20-Sep-2014.) (Proof shortened by AV, 28-Sep-2020.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐹‘0) ≠ 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹‘𝑥)) < (abs‘(𝐹‘0))) | ||
Theorem | ftalem7 24850* | Lemma for fta 24851. Shift the minimum away from zero by a change of variables. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (𝐹‘𝑋) ≠ 0) ⇒ ⊢ (𝜑 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑋)) ≤ (abs‘(𝐹‘𝑥))) | ||
Theorem | fta 24851* | The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹‘𝑧) = 0) | ||
Theorem | basellem1 24852 | Lemma for basel 24861. Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014.) Replace OLD theorem. (Revised ba Wolf Lammen, 18-Sep-2020.) |
⊢ 𝑁 = ((2 · 𝑀) + 1) ⇒ ⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2))) | ||
Theorem | basellem2 24853* | Lemma for basel 24861. Show that 𝑃 is a polynomial of degree 𝑀, and compute its coefficient function. (Contributed by Mario Carneiro, 30-Jul-2014.) |
⊢ 𝑁 = ((2 · 𝑀) + 1) & ⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) ⇒ ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀 − 𝑛)))))) | ||
Theorem | basellem3 24854* | Lemma for basel 24861. Using the binomial theorem and de Moivre's formula, we have the identity e↑i𝑁𝑥 / (sin𝑥)↑𝑛 = Σ𝑚 ∈ (0...𝑁)(𝑁C𝑚)(i↑𝑚)(cot𝑥)↑(𝑁 − 𝑚), so taking imaginary parts yields sin(𝑁𝑥) / (sin𝑥)↑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝑁C2𝑗)(-1)↑(𝑀 − 𝑗) (cot𝑥)↑(-2𝑗) = 𝑃((cot𝑥)↑2), where 𝑁 = 2𝑀 + 1. (Contributed by Mario Carneiro, 30-Jul-2014.) |
⊢ 𝑁 = ((2 · 𝑀) + 1) & ⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) ⇒ ⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (𝑃‘((tan‘𝐴)↑-2)) = ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁))) | ||
Theorem | basellem4 24855* | Lemma for basel 24861. By basellem3 24854, the expression 𝑃((cot𝑥)↑2) = sin(𝑁𝑥) / (sin𝑥)↑𝑁 goes to zero whenever 𝑥 = 𝑛π / 𝑁 for some 𝑛 ∈ (1...𝑀), so this function enumerates 𝑀 distinct roots of a degree- 𝑀 polynomial, which must therefore be all the roots by fta1 24108. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ 𝑁 = ((2 · 𝑀) + 1) & ⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2)) ⇒ ⊢ (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(◡𝑃 “ {0})) | ||
Theorem | basellem5 24856* | Lemma for basel 24861. Using vieta1 24112, we can calculate the sum of the roots of 𝑃 as the quotient of the top two coefficients, and since the function 𝑇 enumerates the roots, we are left with an equation that sums the cot↑2 function at the 𝑀 different roots. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ 𝑁 = ((2 · 𝑀) + 1) & ⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2)) ⇒ ⊢ (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) | ||
Theorem | basellem6 24857 | Lemma for basel 24861. The function 𝐺 goes to zero because it is bounded by 1 / 𝑛. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) ⇒ ⊢ 𝐺 ⇝ 0 | ||
Theorem | basellem7 24858 | Lemma for basel 24861. The function 1 + 𝐴 · 𝐺 for any fixed 𝐴 goes to 1. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) & ⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((ℕ × {1}) ∘𝑓 + ((ℕ × {𝐴}) ∘𝑓 · 𝐺)) ⇝ 1 | ||
Theorem | basellem8 24859* | Lemma for basel 24861. The function 𝐹 of partial sums of the inverse squares is bounded below by 𝐽 and above by 𝐾, obtained by summing the inequality cot↑2𝑥 ≤ 1 / 𝑥↑2 ≤ csc↑2𝑥 = cot↑2𝑥 + 1 over the 𝑀 roots of the polynomial 𝑃, and applying the identity basellem5 24856. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) & ⊢ 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))) & ⊢ 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓 − 𝐺)) & ⊢ 𝐽 = (𝐻 ∘𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) & ⊢ 𝐾 = (𝐻 ∘𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)) & ⊢ 𝑁 = ((2 · 𝑀) + 1) ⇒ ⊢ (𝑀 ∈ ℕ → ((𝐽‘𝑀) ≤ (𝐹‘𝑀) ∧ (𝐹‘𝑀) ≤ (𝐾‘𝑀))) | ||
Theorem | basellem9 24860* | Lemma for basel 24861. Since by basellem8 24859 𝐹 is bounded by two expressions that tend to π↑2 / 6, 𝐹 must also go to π↑2 / 6 by the squeeze theorem climsqz 14415. But the series 𝐹 is exactly the partial sums of 𝑘↑-2, so it follows that this is also the value of the infinite sum Σ𝑘 ∈ ℕ(𝑘↑-2). (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) & ⊢ 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))) & ⊢ 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓 − 𝐺)) & ⊢ 𝐽 = (𝐻 ∘𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) & ⊢ 𝐾 = (𝐻 ∘𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)) ⇒ ⊢ Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6) | ||
Theorem | basel 24861 | The sum of the inverse squares is π↑2 / 6. This is commonly known as the Basel problem, with the first known proof attributed to Euler. See http://en.wikipedia.org/wiki/Basel_problem. This particular proof approach is due to Cauchy (1821). This is Metamath 100 proof #14. (Contributed by Mario Carneiro, 30-Jul-2014.) |
⊢ Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6) | ||
Syntax | ccht 24862 | Extend class notation with the first Chebyshev function. |
class θ | ||
Syntax | cvma 24863 | Extend class notation with the von Mangoldt function. |
class Λ | ||
Syntax | cchp 24864 | Extend class notation with the second Chebyshev function. |
class ψ | ||
Syntax | cppi 24865 | Extend class notation with the prime-counting function pi. |
class π | ||
Syntax | cmu 24866 | Extend class notation with the Möbius function. |
class μ | ||
Syntax | csgm 24867 | Extend class notation with the divisor function. |
class σ | ||
Definition | df-cht 24868* | Define the first Chebyshev function, which adds up the logarithms of all primes less than 𝑥, see definition in [ApostolNT] p. 75. The symbol used to represent this function is sometimes the variant greek letter theta shown here and sometimes the greek letter psi, ψ; however, this notation can also refer to the second Chebyshev function, which adds up the logarithms of prime powers instead, see df-chp 24870. See https://en.wikipedia.org/wiki/Chebyshev_function for a discussion of the two functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) | ||
Definition | df-vma 24869* | Define the von Mangoldt function, which gives the logarithm of the prime at a prime power, and is zero elsewhere, see definition in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ Λ = (𝑥 ∈ ℕ ↦ ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((#‘𝑠) = 1, (log‘∪ 𝑠), 0)) | ||
Definition | df-chp 24870* | Define the second Chebyshev function, which adds up the logarithms of the primes corresponding to the prime powers less than 𝑥, see definition in [ApostolNT] p. 75. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) | ||
Definition | df-ppi 24871 | Define the prime π function, which counts the number of primes less than or equal to 𝑥, see definition in [ApostolNT] p. 8. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ π = (𝑥 ∈ ℝ ↦ (#‘((0[,]𝑥) ∩ ℙ))) | ||
Definition | df-mu 24872* | Define the Möbius function, which is zero for non-squarefree numbers and is -1 or 1 for squarefree numbers according as to the number of prime divisors of the number is even or odd, see definition in [ApostolNT] p. 24. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥})))) | ||
Definition | df-sgm 24873* | Define the sum of positive divisors function (𝑥 σ 𝑛), which is the sum of the xth powers of the positive integer divisors of n, see definition in [ApostolNT] p. 38. For 𝑥 = 0, (𝑥 σ 𝑛) counts the number of divisors of 𝑛, i.e. (0 σ 𝑛) is the divisor function, see remark in [ApostolNT] p. 38. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) | ||
Theorem | efnnfsumcl 24874* | Finite sum closure in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (exp‘𝐵) ∈ ℕ) ⇒ ⊢ (𝜑 → (exp‘Σ𝑘 ∈ 𝐴 𝐵) ∈ ℕ) | ||
Theorem | ppisval 24875 | The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) | ||
Theorem | ppisval2 24876 | The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ)) | ||
Theorem | ppifi 24877 | The set of primes less than 𝐴 is a finite set. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin) | ||
Theorem | prmdvdsfi 24878* | The set of prime divisors of a number is a finite set. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | ||
Theorem | chtf 24879 | Domain and range of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ θ:ℝ⟶ℝ | ||
Theorem | chtcl 24880 | Real closure of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ) | ||
Theorem | chtval 24881* | Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) | ||
Theorem | efchtcl 24882 | The Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℝ → (exp‘(θ‘𝐴)) ∈ ℕ) | ||
Theorem | chtge0 24883 | The Chebyshev function is always positive. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (θ‘𝐴)) | ||
Theorem | vmaval 24884* | Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ⇒ ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((#‘𝑆) = 1, (log‘∪ 𝑆), 0)) | ||
Theorem | isppw 24885* | Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) | ||
Theorem | isppw2 24886* | Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘))) | ||
Theorem | vmappw 24887 | Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (Λ‘(𝑃↑𝐾)) = (log‘𝑃)) | ||
Theorem | vmaprm 24888 | Value of the von Mangoldt function at a prime. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝑃 ∈ ℙ → (Λ‘𝑃) = (log‘𝑃)) | ||
Theorem | vmacl 24889 | Closure for the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) ∈ ℝ) | ||
Theorem | vmaf 24890 | Functionality of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ Λ:ℕ⟶ℝ | ||
Theorem | efvmacl 24891 | The von Mangoldt is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → (exp‘(Λ‘𝐴)) ∈ ℕ) | ||
Theorem | vmage0 24892 | The von Mangoldt function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℕ → 0 ≤ (Λ‘𝐴)) | ||
Theorem | chpval 24893* | Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) | ||
Theorem | chpf 24894 | Functionality of the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ ψ:ℝ⟶ℝ | ||
Theorem | chpcl 24895 | Closure for the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ) | ||
Theorem | efchpcl 24896 | The second Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℝ → (exp‘(ψ‘𝐴)) ∈ ℕ) | ||
Theorem | chpge0 24897 | The second Chebyshev function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (ψ‘𝐴)) | ||
Theorem | ppival 24898 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (#‘((0[,]𝐴) ∩ ℙ))) | ||
Theorem | ppival2 24899 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 18-Sep-2014.) |
⊢ (𝐴 ∈ ℤ → (π‘𝐴) = (#‘((2...𝐴) ∩ ℙ))) | ||
Theorem | ppival2g 24900 | Value of the prime-counting function pi. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 2 ∈ (ℤ≥‘𝑀)) → (π‘𝐴) = (#‘((𝑀...𝐴) ∩ ℙ))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |