![]() |
Metamath
Proof Explorer Theorem List (p. 238 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | limccnp2 23701* | The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑌 ⊆ ℂ) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) & ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵)) & ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑆) limℂ 𝐵)) & ⊢ (𝜑 → 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) ⇒ ⊢ (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥 ∈ 𝐴 ↦ (𝑅𝐻𝑆)) limℂ 𝐵)) | ||
Theorem | limcco 23702* | Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) & ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) & ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) | ||
Theorem | limciun 23703* | A point is a limit of 𝐹 on the finite union ∪ 𝑥 ∈ 𝐴𝐵(𝑥) iff it is the limit of the restriction of 𝐹 to each 𝐵(𝑥). (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐶) = (ℂ ∩ ∩ 𝑥 ∈ 𝐴 ((𝐹 ↾ 𝐵) limℂ 𝐶))) | ||
Theorem | limcun 23704 | A point is a limit of 𝐹 on 𝐴 ∪ 𝐵 iff it is the limit of the restriction of 𝐹 to 𝐴 and to 𝐵. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:(𝐴 ∪ 𝐵)⟶ℂ) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐶) = (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶))) | ||
Theorem | dvlem 23705 | Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) & ⊢ (𝜑 → 𝐷 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) | ||
Theorem | dvfval 23706* | Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝑇 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) | ||
Theorem | eldv 23707* | The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝑇 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) | ||
Theorem | dvcl 23708 | The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝐵(𝑆 D 𝐹)𝐶) → 𝐶 ∈ ℂ) | ||
Theorem | dvbssntr 23709 | The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴)) | ||
Theorem | dvbss 23710 | The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴) | ||
Theorem | dvbsss 23711 | The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) |
⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | ||
Theorem | perfdvf 23712 | The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝐾 ↾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | ||
Theorem | recnprss 23713 | Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | ||
Theorem | recnperf 23714 | Both ℝ and ℂ are perfect subsets of ℂ. (Contributed by Mario Carneiro, 28-Dec-2016.) |
⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝐾 ↾t 𝑆) ∈ Perf) | ||
Theorem | dvfg 23715 | Explicitly write out the functionality condition on derivative for 𝑆 = ℝ and ℂ. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | ||
Theorem | dvf 23716 | The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
⊢ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ | ||
Theorem | dvfcn 23717 | The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ | ||
Theorem | dvreslem 23718* | Lemma for dvres 23720. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝑇 = (𝐾 ↾t 𝑆) & ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝐵 ⊆ 𝑆) & ⊢ (𝜑 → 𝑦 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑥(𝑆 D (𝐹 ↾ 𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦 ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))) | ||
Theorem | dvres2lem 23719* | Lemma for dvres2 23721. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝑇 = (𝐾 ↾t 𝑆) & ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝐵 ⊆ 𝑆) & ⊢ (𝜑 → 𝑦 ∈ ℂ) & ⊢ (𝜑 → 𝑥(𝑆 D 𝐹)𝑦) & ⊢ (𝜑 → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑥(𝐵 D (𝐹 ↾ 𝐵))𝑦) | ||
Theorem | dvres 23720 | Restriction of a derivative. Note that our definition of derivative df-dv 23676 would still make sense if we demanded that 𝑥 be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point 𝑥 when restricted to different subsets containing 𝑥; a classic example is the absolute value function restricted to [0, +∞) and (-∞, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝑇 = (𝐾 ↾t 𝑆) ⇒ ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))) | ||
Theorem | dvres2 23721 | Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex differentiable then it is also real differentiable. Unlike dvres 23720, there is no simple reverse relation relating real differentiable functions to complex differentiability, and indeed there are functions like ℜ(𝑥) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹 ↾ 𝐵))) | ||
Theorem | dvres3 23722 | Restriction of a complex differentiable function to the reals. (Contributed by Mario Carneiro, 10-Feb-2015.) |
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → (𝑆 D (𝐹 ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆)) | ||
Theorem | dvres3a 23723 | Restriction of a complex differentiable function to the reals. This version of dvres3 23722 assumes that 𝐹 is differentiable on its domain, but does not require 𝐹 to be differentiable on the whole real line. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝑆 D (𝐹 ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆)) | ||
Theorem | dvidlem 23724* | Lemma for dvid 23726 and dvconst 23725. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵})) | ||
Theorem | dvconst 23725 | Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) | ||
Theorem | dvid 23726 | Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
⊢ (ℂ D ( I ↾ ℂ)) = (ℂ × {1}) | ||
Theorem | dvcnp 23727* | The difference quotient is continuous at 𝐵 when the original function is differentiable at 𝐵. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ 𝐽 = (𝐾 ↾t 𝐴) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, ((𝑆 D 𝐹)‘𝐵), (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) ⇒ ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) | ||
Theorem | dvcnp2 23728 | A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ 𝐽 = (𝐾 ↾t 𝐴) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) | ||
Theorem | dvcn 23729 | A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.) |
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (𝐴–cn→ℂ)) | ||
Theorem | dvnfval 23730* | Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥)) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹}))) | ||
Theorem | dvnff 23731 | The iterated derivative is a function. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹)) | ||
Theorem | dvn0 23732 | Zero times iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹) | ||
Theorem | dvnp1 23733 | Successor iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁))) | ||
Theorem | dvn1 23734 | One times iterated derivative. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘1) = (𝑆 D 𝐹)) | ||
Theorem | dvnf 23735 | The N-times derivative is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ) | ||
Theorem | dvnbss 23736 | The set of N-times differentiable points is a subset of the domain of the function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹) | ||
Theorem | dvnadd 23737 | The 𝑁-th derivative of the 𝑀-th derivative of 𝐹 is the same as the 𝑀 + 𝑁-th derivative of 𝐹. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))) | ||
Theorem | dvn2bss 23738 | An N-times differentiable point is an M-times differentiable point, if 𝑀 ≤ 𝑁. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑀)) | ||
Theorem | dvnres 23739 | Multiple derivative version of dvres3a 23723. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑁 ∈ ℕ0) ∧ dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹) → ((𝑆 D𝑛 (𝐹 ↾ 𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆)) | ||
Theorem | cpnfval 23740* | Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝑆 ⊆ ℂ → (Cn‘𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})) | ||
Theorem | fncpn 23741 | The Cn object is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝑆 ⊆ ℂ → (Cn‘𝑆) Fn ℕ0) | ||
Theorem | elcpn 23742 | Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((Cn‘𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹–cn→ℂ)))) | ||
Theorem | cpnord 23743 | Cn conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((Cn‘𝑆)‘𝑁) ⊆ ((Cn‘𝑆)‘𝑀)) | ||
Theorem | cpncn 23744 | A Cn function is continuous. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) | ||
Theorem | cpnres 23745 | The restriction of a Cn function is Cn. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹 ↾ 𝑆) ∈ ((Cn‘𝑆)‘𝑁)) | ||
Theorem | dvaddbr 23746 | The sum rule for derivatives at a point. For the (simpler but more limited) function version, see dvadd 23748. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶ℂ) & ⊢ (𝜑 → 𝑌 ⊆ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑉) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(𝐾 + 𝐿)) | ||
Theorem | dvmulbr 23747 | The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmul 23749. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶ℂ) & ⊢ (𝜑 → 𝑌 ⊆ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑉) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶)))) | ||
Theorem | dvadd 23748 | The sum rule for derivatives at a point. For the (more general) relation version, see dvaddbr 23746. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶ℂ) & ⊢ (𝜑 → 𝑌 ⊆ 𝑆) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) ⇒ ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) | ||
Theorem | dvmul 23749 | The product rule for derivatives at a point. For the (more general) relation version, see dvmulbr 23747. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶ℂ) & ⊢ (𝜑 → 𝑌 ⊆ 𝑆) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) ⇒ ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶)))) | ||
Theorem | dvaddf 23750 | The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺))) | ||
Theorem | dvmulf 23751 | The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹))) | ||
Theorem | dvcmul 23752 | The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) ⇒ ⊢ (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) | ||
Theorem | dvcmulf 23753 | The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹)) = ((𝑆 × {𝐴}) ∘𝑓 · (𝑆 D 𝐹))) | ||
Theorem | dvcobr 23754 | The chain rule for derivatives at a point. For the (simpler but more limited) function version, see dvco 23755. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) & ⊢ (𝜑 → 𝑌 ⊆ 𝑇) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑇 ⊆ ℂ) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑉) & ⊢ (𝜑 → (𝐺‘𝐶)(𝑆 D 𝐹)𝐾) & ⊢ (𝜑 → 𝐶(𝑇 D 𝐺)𝐿) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → 𝐶(𝑇 D (𝐹 ∘ 𝐺))(𝐾 · 𝐿)) | ||
Theorem | dvco 23755 | The chain rule for derivatives at a point. For the (more general) relation version, see dvcobr 23754. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) & ⊢ (𝜑 → 𝑌 ⊆ 𝑇) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → (𝐺‘𝐶) ∈ dom (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑇 D 𝐺)) ⇒ ⊢ (𝜑 → ((𝑇 D (𝐹 ∘ 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘(𝐺‘𝐶)) · ((𝑇 D 𝐺)‘𝐶))) | ||
Theorem | dvcof 23756 | The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → dom (𝑇 D 𝐺) = 𝑌) ⇒ ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘𝑓 · (𝑇 D 𝐺))) | ||
Theorem | dvcjbr 23757 | The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 23758. (This doesn't follow from dvcobr 23754 because ∗ is not a function on the reals, and even if we used complex derivatives, ∗ is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ dom (ℝ D 𝐹)) ⇒ ⊢ (𝜑 → 𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶))) | ||
Theorem | dvcj 23758 | The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 23757. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹))) | ||
Theorem | dvfre 23759 | The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) | ||
Theorem | dvnfre 23760 | The 𝑁-th derivative of a real function is real. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ) | ||
Theorem | dvexp 23761* | Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) | ||
Theorem | dvexp2 23762* | Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) | ||
Theorem | dvrec 23763* | Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))) | ||
Theorem | dvmptres3 23764* | Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) | ||
Theorem | dvmptid 23765* | Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝑥)) = (𝑥 ∈ 𝑆 ↦ 1)) | ||
Theorem | dvmptc 23766* | Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 0)) | ||
Theorem | dvmptcl 23767* | Closure lemma for dvmptcmul 23772 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) | ||
Theorem | dvmptadd 23768* | Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 + 𝐷))) | ||
Theorem | dvmptmul 23769* | Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) | ||
Theorem | dvmptres2 23770* | Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑍 ⊆ 𝑋) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑍 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) | ||
Theorem | dvmptres 23771* | Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑌 ∈ 𝐽) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) | ||
Theorem | dvmptcmul 23772* | Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐵))) | ||
Theorem | dvmptdivc 23773* | Function-builder for derivative, division rule for constant divisor. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 / 𝐶))) | ||
Theorem | dvmptneg 23774* | Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ -𝐴)) = (𝑥 ∈ 𝑋 ↦ -𝐵)) | ||
Theorem | dvmptsub 23775* | Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 − 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 − 𝐷))) | ||
Theorem | dvmptcj 23776* | Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) | ||
Theorem | dvmptre 23777* | Function-builder for derivative, real part. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (ℜ‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (ℜ‘𝐵))) | ||
Theorem | dvmptim 23778* | Function-builder for derivative, imaginary part. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (ℑ‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (ℑ‘𝐵))) | ||
Theorem | dvmptntr 23779* | Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) | ||
Theorem | dvmptco 23780* | Function-builder for derivative, chain rule. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → (𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) = (𝑦 ∈ 𝑌 ↦ 𝐷)) & ⊢ (𝑦 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑦 = 𝐴 → 𝐷 = 𝐹) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐸)) = (𝑥 ∈ 𝑋 ↦ (𝐹 · 𝐵))) | ||
Theorem | dvrecg 23781* | Derivative of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐵)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵))) = (𝑥 ∈ 𝑋 ↦ -((𝐴 · 𝐶) / (𝐵↑2)))) | ||
Theorem | dvmptdiv 23782* | Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))) | ||
Theorem | dvmptfsum 23783* | Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)) | ||
Theorem | dvcnvlem 23784 | Lemma for dvcnvre 23827. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝑆) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) & ⊢ (𝜑 → ◡𝐹 ∈ (𝑌–cn→𝑋)) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹‘𝐶)(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘𝐶))) | ||
Theorem | dvcnv 23785* | A weak version of dvcnvre 23827, valid for both real and complex domains but under the hypothesis that the inverse function is already known to be continuous, and the image set is known to be open. A more advanced proof can show that these conditions are unnecessary. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝑆) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) & ⊢ (𝜑 → ◡𝐹 ∈ (𝑌–cn→𝑋)) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹)) ⇒ ⊢ (𝜑 → (𝑆 D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) | ||
Theorem | dvexp3 23786* | Derivative of an exponential of integer exponent. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ (𝑁 ∈ ℤ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) | ||
Theorem | dveflem 23787 | Derivative of the exponential function at 0. The key step in the proof is eftlub 14883, to show that abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ 0(ℂ D exp)1 | ||
Theorem | dvef 23788 | Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.) |
⊢ (ℂ D exp) = exp | ||
Theorem | dvsincos 23789 | Derivative of the sine and cosine functions. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))) | ||
Theorem | dvsin 23790 | Derivative of the sine function. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ (ℂ D sin) = cos | ||
Theorem | dvcos 23791 | Derivative of the cosine function. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) | ||
Theorem | dvferm1lem 23792* | Lemma for dvferm 23796. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) & ⊢ (𝜑 → 0 < ((ℝ D 𝐹)‘𝑈)) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑇) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) & ⊢ 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | dvferm1 23793* | One-sided version of dvferm 23796. A point 𝑈 which is the local maximum of its right neighborhood has derivative at most zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) ⇒ ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ≤ 0) | ||
Theorem | dvferm2lem 23794* | Lemma for dvferm 23796. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) & ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) < 0) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑇) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) & ⊢ 𝑆 = ((if(𝐴 ≤ (𝑈 − 𝑇), (𝑈 − 𝑇), 𝐴) + 𝑈) / 2) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | dvferm2 23795* | One-sided version of dvferm 23796. A point 𝑈 which is the local maximum of its left neighborhood has derivative at least zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) ⇒ ⊢ (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈)) | ||
Theorem | dvferm 23796* | Fermat's theorem on stationary points. A point 𝑈 which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) ⇒ ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) | ||
Theorem | rollelem 23797* | Lemma for rolle 23798. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) & ⊢ (𝜑 → 𝑈 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → ¬ 𝑈 ∈ {𝐴, 𝐵}) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) | ||
Theorem | rolle 23798* | Rolle's theorem. If 𝐹 is a real continuous function on [𝐴, 𝐵] which is differentiable on (𝐴, 𝐵), and 𝐹(𝐴) = 𝐹(𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that (ℝ D 𝐹)‘𝑥 = 0. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) | ||
Theorem | cmvth 23799* | Cauchy's Mean Value Theorem. If 𝐹, 𝐺 are real continuous functions on [𝐴, 𝐵] differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that 𝐹' (𝑥) / 𝐺' (𝑥) = (𝐹(𝐴) − 𝐹(𝐵)) / (𝐺(𝐴) − 𝐺(𝐵)). (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺‘𝐵) − (𝐺‘𝐴)) · ((ℝ D 𝐹)‘𝑥))) | ||
Theorem | mvth 23800* | The Mean Value Theorem. If 𝐹 is a real continuous function on [𝐴, 𝐵] which is differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that (ℝ D 𝐹)‘𝑥 is equal to the average slope over [𝐴, 𝐵]. This is Metamath 100 proof #75. (Contributed by Mario Carneiro, 1-Sep-2014.) (Proof shortened by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |