HomeHome Metamath Proof Explorer
Theorem List (p. 237 of 429)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27903)
  Hilbert Space Explorer  Hilbert Space Explorer
(27904-29428)
  Users' Mathboxes  Users' Mathboxes
(29429-42879)
 

Theorem List for Metamath Proof Explorer - 23601-23700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremitgcnlem 23601* Expand out the sum in dfitg 23581. (Contributed by Mario Carneiro, 1-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))    &   𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))    &   𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))    &   𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅𝑆) + (i · (𝑇𝑈))))
 
Theoremiblrelem 23602* Integrability of a real function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)       (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)))
 
Theoremiblposlem 23603* Lemma for iblpos 23604. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐵)       (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = 0)
 
Theoremiblpos 23604* Integrability of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐵)       (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
 
Theoremiblre 23605* Integrability of a real function. (Contributed by Mario Carneiro, 11-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)       (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)))
 
Theoremitgrevallem1 23606* Lemma for itgposval 23607 and itgreval 23608. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))))
 
Theoremitgposval 23607* The integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐵)       (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
 
Theoremitgreval 23608* Decompose the integral of a real function into positive and negative parts. (Contributed by Mario Carneiro, 31-Jul-2014.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥))
 
Theoremitgrecl 23609* Real closure of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℝ)
 
Theoremiblcn 23610* Integrability of a complex function. (Contributed by Mario Carneiro, 6-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
 
Theoremitgcnval 23611* Decompose the integral of a complex function into real and imaginary parts. (Contributed by Mario Carneiro, 6-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
 
Theoremitgre 23612* Real part of an integral. (Contributed by Mario Carneiro, 14-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → (ℜ‘∫𝐴𝐵 d𝑥) = ∫𝐴(ℜ‘𝐵) d𝑥)
 
Theoremitgim 23613* Imaginary part of an integral. (Contributed by Mario Carneiro, 14-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → (ℑ‘∫𝐴𝐵 d𝑥) = ∫𝐴(ℑ‘𝐵) d𝑥)
 
Theoremiblneg 23614* The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
 
Theoremitgneg 23615* Negation of an integral. (Contributed by Mario Carneiro, 25-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥)
 
Theoremiblss 23616* A subset of an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
(𝜑𝐴𝐵)    &   (𝜑𝐴 ∈ dom vol)    &   ((𝜑𝑥𝐵) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)       (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
 
Theoremiblss2 23617* Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝜑𝐴𝐵)    &   (𝜑𝐵 ∈ dom vol)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)       (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
 
Theoremitgitg2 23618* Transfer an integral using 2 to an equivalent integral using . (Contributed by Mario Carneiro, 6-Aug-2014.)
((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)    &   ((𝜑𝑥 ∈ ℝ) → 0 ≤ 𝐴)    &   (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ 𝐿1)       (𝜑 → ∫ℝ𝐴 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ 𝐴)))
 
Theoremi1fibl 23619 A simple function is integrable. (Contributed by Mario Carneiro, 6-Aug-2014.)
(𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
 
Theoremitgitg1 23620* Transfer an integral using 1 to an equivalent integral using . (Contributed by Mario Carneiro, 6-Aug-2014.)
(𝐹 ∈ dom ∫1 → ∫ℝ(𝐹𝑥) d𝑥 = (∫1𝐹))
 
Theoremitgle 23621* Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.)
(𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥)
 
Theoremitgge0 23622* The integral of a positive function is positive. (Contributed by Mario Carneiro, 25-Aug-2014.)
(𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐵)       (𝜑 → 0 ≤ ∫𝐴𝐵 d𝑥)
 
Theoremitgss 23623* Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)       (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
 
Theoremitgss2 23624* Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.)
(𝐴𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
 
Theoremitgeqa 23625* Approximate equality of integrals. If 𝐶(𝑥) = 𝐷(𝑥) for almost all 𝑥, then 𝐵𝐶(𝑥) d𝑥 = ∫𝐵𝐷(𝑥) d𝑥 and one is integrable iff the other is. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥𝐵) → 𝐷 ∈ ℂ)    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑 → (vol*‘𝐴) = 0)    &   ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)       (𝜑 → (((𝑥𝐵𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐷) ∈ 𝐿1) ∧ ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥))
 
Theoremitgss3 23626* Expand the set of an integral by a nullset. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
(𝜑𝐴𝐵)    &   (𝜑𝐵 ⊆ ℝ)    &   (𝜑 → (vol*‘(𝐵𝐴)) = 0)    &   ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)       (𝜑 → (((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1) ∧ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥))
 
Theoremitgioo 23627* Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)       (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴[,]𝐵)𝐶 d𝑥)
 
Theoremitgless 23628* Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014.)
(𝜑𝐴𝐵)    &   (𝜑𝐴 ∈ dom vol)    &   ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐵) → 0 ≤ 𝐶)    &   (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)       (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥)
 
Theoremiblconst 23629 A constant function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ 𝐿1)
 
Theoremitgconst 23630* Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.)
((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (𝐵 · (vol‘𝐴)))
 
Theoremibladdlem 23631* Lemma for ibladd 23632. (Contributed by Mario Carneiro, 17-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐷 = (𝐵 + 𝐶))    &   (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)    &   (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)    &   (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)    &   (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)       (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)
 
Theoremibladd 23632* Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)       (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
 
Theoremiblsub 23633* Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)       (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝐿1)
 
Theoremitgaddlem1 23634* Lemma for itgadd 23636. (Contributed by Mario Carneiro, 17-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐵)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐶)       (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
 
Theoremitgaddlem2 23635* Lemma for itgadd 23636. (Contributed by Mario Carneiro, 17-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)       (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
 
Theoremitgadd 23636* Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)       (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
 
Theoremitgsub 23637* Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)       (𝜑 → ∫𝐴(𝐵𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 − ∫𝐴𝐶 d𝑥))
 
Theoremitgfsum 23638* Take a finite sum of integrals over the same domain. (Contributed by Mario Carneiro, 24-Aug-2014.)
(𝜑𝐴 ∈ dom vol)    &   (𝜑𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶𝑉)    &   ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ 𝐿1)       (𝜑 → ((𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘𝐵 𝐶 d𝑥 = Σ𝑘𝐵𝐴𝐶 d𝑥))
 
Theoremiblabslem 23639* Lemma for iblabs 23640. (Contributed by Mario Carneiro, 25-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))    &   (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)       (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
 
Theoremiblabs 23640* The absolute value of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
 
Theoremiblabsr 23641* A measurable function is integrable iff its absolute value is integrable. (See iblabs 23640 for the forward implication.) (Contributed by Mario Carneiro, 25-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)    &   (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)       (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
 
Theoremiblmulc2 23642* Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.)
(𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
 
Theoremitgmulc2lem1 23643* Lemma for itgmulc2 23645: positive real case. (Contributed by Mario Carneiro, 25-Aug-2014.)
(𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   (𝜑𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐶)    &   ((𝜑𝑥𝐴) → 0 ≤ 𝐵)       (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
 
Theoremitgmulc2lem2 23644* Lemma for itgmulc2 23645: real case. (Contributed by Mario Carneiro, 25-Aug-2014.)
(𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   (𝜑𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)       (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
 
Theoremitgmulc2 23645* Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.)
(𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
 
Theoremitgabs 23646* The triangle inequality for integrals. (Contributed by Mario Carneiro, 25-Aug-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)       (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
 
Theoremitgsplit 23647* The integral splits under an almost disjoint union. (Contributed by Mario Carneiro, 11-Aug-2014.)
(𝜑 → (vol*‘(𝐴𝐵)) = 0)    &   (𝜑𝑈 = (𝐴𝐵))    &   ((𝜑𝑥𝑈) → 𝐶𝑉)    &   (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)    &   (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)       (𝜑 → ∫𝑈𝐶 d𝑥 = (∫𝐴𝐶 d𝑥 + ∫𝐵𝐶 d𝑥))
 
Theoremitgspliticc 23648* The integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵 ∈ (𝐴[,]𝐶))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐶)) → 𝐷𝑉)    &   (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ 𝐿1)    &   (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↦ 𝐷) ∈ 𝐿1)       (𝜑 → ∫(𝐴[,]𝐶)𝐷 d𝑥 = (∫(𝐴[,]𝐵)𝐷 d𝑥 + ∫(𝐵[,]𝐶)𝐷 d𝑥))
 
Theoremitgsplitioo 23649* The integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵 ∈ (𝐴[,]𝐶))    &   ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)    &   (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)    &   (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)       (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
 
Theorembddmulibl 23650* A bounded function times an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝐹𝑓 · 𝐺) ∈ 𝐿1)
 
Theorembddibl 23651* A bounded function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1)
 
Theoremcniccibl 23652 A continuous function on a closed bounded interval is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐹 ∈ 𝐿1)
 
Theoremitggt0 23653* The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.)
(𝜑 → 0 < (vol‘𝐴))    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ+)       (𝜑 → 0 < ∫𝐴𝐵 d𝑥)
 
Theoremitgcn 23654* Transfer itg2cn 23575 to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
 
13.2.2.2  Lesbesgue directed integral
 
Syntaxcdit 23655 Extend class notation with the directed integral.
class ⨜[𝐴𝐵]𝐶 d𝑥
 
Definitiondf-ditg 23656 Define the directed integral, which is just a regular integral but with a sign change when the limits are interchanged. The 𝐴 and 𝐵 here are the lower and upper limits of the integral, usually written as a subscript and superscript next to the integral sign. We define the region of integration to be an open interval instead of closed so that we can use +∞, -∞ for limits and also integrate up to a singularity at an endpoint. (Contributed by Mario Carneiro, 13-Aug-2014.)
⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
 
Theoremditgeq1 23657* Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
(𝐴 = 𝐵 → ⨜[𝐴𝐶]𝐷 d𝑥 = ⨜[𝐵𝐶]𝐷 d𝑥)
 
Theoremditgeq2 23658* Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
(𝐴 = 𝐵 → ⨜[𝐶𝐴]𝐷 d𝑥 = ⨜[𝐶𝐵]𝐷 d𝑥)
 
Theoremditgeq3 23659* Equality theorem for the directed integral. (The domain of the equality here is very rough; for more precise bounds one should decompose it with ditgpos 23665 first and use the equality theorems for df-itg 23437.) (Contributed by Mario Carneiro, 13-Aug-2014.)
(∀𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜[𝐴𝐵]𝐷 d𝑥 = ⨜[𝐴𝐵]𝐸 d𝑥)
 
Theoremditgeq3dv 23660* Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
((𝜑𝑥 ∈ ℝ) → 𝐷 = 𝐸)       (𝜑 → ⨜[𝐴𝐵]𝐷 d𝑥 = ⨜[𝐴𝐵]𝐸 d𝑥)
 
Theoremditgex 23661 A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014.)
⨜[𝐴𝐵]𝐶 d𝑥 ∈ V
 
Theoremditg0 23662* Value of the directed integral from a point to itself. (Contributed by Mario Carneiro, 13-Aug-2014.)
⨜[𝐴𝐴]𝐵 d𝑥 = 0
 
Theoremcbvditg 23663* Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.)
(𝑥 = 𝑦𝐶 = 𝐷)    &   𝑦𝐶    &   𝑥𝐷       ⨜[𝐴𝐵]𝐶 d𝑥 = ⨜[𝐴𝐵]𝐷 d𝑦
 
Theoremcbvditgv 23664* Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014.)
(𝑥 = 𝑦𝐶 = 𝐷)       ⨜[𝐴𝐵]𝐶 d𝑥 = ⨜[𝐴𝐵]𝐷 d𝑦
 
Theoremditgpos 23665* Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
(𝜑𝐴𝐵)       (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥)
 
Theoremditgneg 23666* Value of the directed integral in the backward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
(𝜑𝐴𝐵)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥)
 
Theoremditgcl 23667* Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝐴 ∈ (𝑋[,]𝑌))    &   (𝜑𝐵 ∈ (𝑋[,]𝑌))    &   ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)       (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 ∈ ℂ)
 
Theoremditgswap 23668* Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝐴 ∈ (𝑋[,]𝑌))    &   (𝜑𝐵 ∈ (𝑋[,]𝑌))    &   ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐶𝑉)    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1)       (𝜑 → ⨜[𝐵𝐴]𝐶 d𝑥 = -⨜[𝐴𝐵]𝐶 d𝑥)
 
Theoremditgsplitlem 23669* Lemma for ditgsplit 23670. (Contributed by Mario Carneiro, 13-Aug-2014.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝐴 ∈ (𝑋[,]𝑌))    &   (𝜑𝐵 ∈ (𝑋[,]𝑌))    &   (𝜑𝐶 ∈ (𝑋[,]𝑌))    &   ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)    &   ((𝜓𝜃) ↔ (𝐴𝐵𝐵𝐶))       (((𝜑𝜓) ∧ 𝜃) → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
 
Theoremditgsplit 23670* This theorem is the raison d'être for the directed integral, because unlike itgspliticc 23648, there is no constraint on the ordering of the points 𝐴, 𝐵, 𝐶 in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.)
(𝜑𝑋 ∈ ℝ)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝐴 ∈ (𝑋[,]𝑌))    &   (𝜑𝐵 ∈ (𝑋[,]𝑌))    &   (𝜑𝐶 ∈ (𝑋[,]𝑌))    &   ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐷𝑉)    &   (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ 𝐿1)       (𝜑 → ⨜[𝐴𝐶]𝐷 d𝑥 = (⨜[𝐴𝐵]𝐷 d𝑥 + ⨜[𝐵𝐶]𝐷 d𝑥))
 
13.3  Derivatives
 
13.3.1  Real and complex differentiation
 
13.3.1.1  Derivatives of functions of one complex or real variable
 
Syntaxclimc 23671 The limit operator.
class lim
 
Syntaxcdv 23672 The derivative operator.
class D
 
Syntaxcdvn 23673 The 𝑛-th derivative operator.
class D𝑛
 
Syntaxccpn 23674 The set of 𝑛-times continuously differentiable functions.
class Cn
 
Definitiondf-limc 23675* Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.)
lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓𝑧))) ∈ (((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)})
 
Definitiondf-dv 23676* Define the derivative operator on functions on the reals. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set 𝑠 here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of and is well-behaved when 𝑠 contains no isolated points, we will restrict our attention to the cases 𝑠 = ℝ or 𝑠 = ℂ for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.)
D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
 
Definitiondf-dvn 23677* Define the 𝑛-th derivative operator on functions on the complex numbers. This just iterates the derivative operation according to the last argument. (Contributed by Mario Carneiro, 11-Feb-2015.)
D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})))
 
Definitiondf-cpn 23678* Define the set of 𝑛-times continuously differentiable functions. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Cn = (𝑠 ∈ 𝒫 ℂ ↦ (𝑥 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑥) ∈ (dom 𝑓cn→ℂ)}))
 
Theoremreldv 23679 The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 24-Dec-2016.)
Rel (𝑆 D 𝐹)
 
Theoremlimcvallem 23680* Lemma for ellimc 23682. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝐽 = (𝐾t (𝐴 ∪ {𝐵}))    &   𝐾 = (TopOpen‘ℂfld)    &   𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))       ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ))
 
Theoremlimcfval 23681* Value and set bounds on the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝐽 = (𝐾t (𝐴 ∪ {𝐵}))    &   𝐾 = (TopOpen‘ℂfld)       ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 lim 𝐵) ⊆ ℂ))
 
Theoremellimc 23682* Value of the limit predicate. 𝐶 is the limit of the function 𝐹 at 𝐵 if the function 𝐺, formed by adding 𝐵 to the domain of 𝐹 and setting it to 𝐶, is continuous at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝐽 = (𝐾t (𝐴 ∪ {𝐵}))    &   𝐾 = (TopOpen‘ℂfld)    &   𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
 
Theoremlimcrcl 23683 Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
 
Theoremlimccl 23684 Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝐹 lim 𝐵) ⊆ ℂ
 
Theoremlimcdif 23685 It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝜑𝐹:𝐴⟶ℂ)       (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))
 
Theoremellimc2 23686* Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   𝐾 = (TopOpen‘ℂfld)       (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
 
Theoremlimcnlp 23687 If 𝐵 is not a limit point of the domain of the function 𝐹, then every point is a limit of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   𝐾 = (TopOpen‘ℂfld)    &   (𝜑 → ¬ 𝐵 ∈ ((limPt‘𝐾)‘𝐴))       (𝜑 → (𝐹 lim 𝐵) = ℂ)
 
Theoremellimc3 23688* Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
 
Theoremlimcflflem 23689 Lemma for limcflf 23690. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))    &   𝐾 = (TopOpen‘ℂfld)    &   𝐶 = (𝐴 ∖ {𝐵})    &   𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)       (𝜑𝐿 ∈ (Fil‘𝐶))
 
Theoremlimcflf 23690 The limit operator can be expressed as a filter limit, from the filter of neighborhoods of 𝐵 restricted to 𝐴 ∖ {𝐵}, to the topology of the complex numbers. (If 𝐵 is not a limit point of 𝐴, then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))    &   𝐾 = (TopOpen‘ℂfld)    &   𝐶 = (𝐴 ∖ {𝐵})    &   𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)       (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹𝐶)))
 
Theoremlimcmo 23691* If 𝐵 is a limit point of the domain of the function 𝐹, then there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))    &   𝐾 = (TopOpen‘ℂfld)       (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
 
Theoremlimcmpt 23692* Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)    &   𝐽 = (𝐾t (𝐴 ∪ {𝐵}))    &   𝐾 = (TopOpen‘ℂfld)       (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
 
Theoremlimcmpt2 23693* Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵𝐴)    &   ((𝜑 ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℂ)    &   𝐽 = (𝐾t 𝐴)    &   𝐾 = (TopOpen‘ℂfld)       (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) lim 𝐵) ↔ (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
 
Theoremlimcresi 23694 Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
 
Theoremlimcres 23695 If 𝐵 is an interior point of 𝐶 ∪ {𝐵} relative to the domain 𝐴, then a limit point of 𝐹𝐶 extends to a limit of 𝐹. (Contributed by Mario Carneiro, 27-Dec-2016.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐶𝐴)    &   (𝜑𝐴 ⊆ ℂ)    &   𝐾 = (TopOpen‘ℂfld)    &   𝐽 = (𝐾t (𝐴 ∪ {𝐵}))    &   (𝜑𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})))       (𝜑 → ((𝐹𝐶) lim 𝐵) = (𝐹 lim 𝐵))
 
Theoremcnplimc 23696 A function is continuous at 𝐵 iff its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
𝐾 = (TopOpen‘ℂfld)    &   𝐽 = (𝐾t 𝐴)       ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
 
Theoremcnlimc 23697* 𝐹 is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
 
Theoremcnlimci 23698 If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝜑𝐹 ∈ (𝐴cn𝐷))    &   (𝜑𝐵𝐴)       (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
 
Theoremcnmptlimc 23699* If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝜑 → (𝑥𝐴𝑋) ∈ (𝐴cn𝐷))    &   (𝜑𝐵𝐴)    &   (𝑥 = 𝐵𝑋 = 𝑌)       (𝜑𝑌 ∈ ((𝑥𝐴𝑋) lim 𝐵))
 
Theoremlimccnp 23700 If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.)
(𝜑𝐹:𝐴𝐷)    &   (𝜑𝐷 ⊆ ℂ)    &   𝐾 = (TopOpen‘ℂfld)    &   𝐽 = (𝐾t 𝐷)    &   (𝜑𝐶 ∈ (𝐹 lim 𝐵))    &   (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))       (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
  Copyright terms: Public domain < Previous  Next >