HomeHome Metamath Proof Explorer
Theorem List (p. 230 of 429)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27903)
  Hilbert Space Explorer  Hilbert Space Explorer
(27904-29428)
  Users' Mathboxes  Users' Mathboxes
(29429-42879)
 

Theorem List for Metamath Proof Explorer - 22901-23000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempi1xfr 22901* Given a path 𝐹 and its inverse 𝐼 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.)
𝑃 = (𝐽 π1 (𝐹‘0))    &   𝑄 = (𝐽 π1 (𝐹‘1))    &   𝐵 = (Base‘𝑃)    &   𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (II Cn 𝐽))    &   𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))       (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
 
Theorempi1xfrcnvlem 22902* Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
𝑃 = (𝐽 π1 (𝐹‘0))    &   𝑄 = (𝐽 π1 (𝐹‘1))    &   𝐵 = (Base‘𝑃)    &   𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (II Cn 𝐽))    &   𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))    &   𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)       (𝜑𝐺𝐻)
 
Theorempi1xfrcnv 22903* Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
𝑃 = (𝐽 π1 (𝐹‘0))    &   𝑄 = (𝐽 π1 (𝐹‘1))    &   𝐵 = (Base‘𝑃)    &   𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (II Cn 𝐽))    &   𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))    &   𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)       (𝜑 → (𝐺 = 𝐻𝐺 ∈ (𝑄 GrpHom 𝑃)))
 
Theorempi1xfrgim 22904* The mapping 𝐺 between fundamental groups is an isomorphism. (Contributed by Mario Carneiro, 12-Feb-2015.)
𝑃 = (𝐽 π1 (𝐹‘0))    &   𝑄 = (𝐽 π1 (𝐹‘1))    &   𝐵 = (Base‘𝑃)    &   𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (II Cn 𝐽))    &   𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))       (𝜑𝐺 ∈ (𝑃 GrpIso 𝑄))
 
Theorempi1cof 22905* Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝑃 = (𝐽 π1 𝐴)    &   𝑄 = (𝐾 π1 𝐵)    &   𝑉 = (Base‘𝑃)    &   𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝐴𝑋)    &   (𝜑 → (𝐹𝐴) = 𝐵)       (𝜑𝐺:𝑉⟶(Base‘𝑄))
 
Theorempi1coval 22906* The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 10-Aug-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
𝑃 = (𝐽 π1 𝐴)    &   𝑄 = (𝐾 π1 𝐵)    &   𝑉 = (Base‘𝑃)    &   𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝐴𝑋)    &   (𝜑 → (𝐹𝐴) = 𝐵)       ((𝜑𝑇 𝑉) → (𝐺‘[𝑇]( ≃ph𝐽)) = [(𝐹𝑇)]( ≃ph𝐾))
 
Theorempi1coghm 22907* The mapping 𝐺 between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
𝑃 = (𝐽 π1 𝐴)    &   𝑄 = (𝐾 π1 𝐵)    &   𝑉 = (Base‘𝑃)    &   𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝐴𝑋)    &   (𝜑 → (𝐹𝐴) = 𝐵)       (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
 
12.5  Metric subcomplex vector spaces
 
12.5.1  Subcomplex modules
 
Syntaxcclm 22908 Syntax for the class of subcomplex modules.
class ℂMod
 
Definitiondf-clm 22909* Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers fld, which allows us to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 18832), left modules over such subrings are the same as right modules, see rmodislmod 18979. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.)
ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
 
Theoremisclm 22910 A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
 
Theoremclmsca 22911 The ring of scalars 𝐹 of a subcomplex module is the restriction of the field of complex numbers to the base set of 𝐹. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
 
Theoremclmsubrg 22912 The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
 
Theoremclmlmod 22913 A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.)
(𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
 
Theoremclmgrp 22914 A subcomplex module is an additive group. (Contributed by Mario Carneiro, 16-Oct-2015.)
(𝑊 ∈ ℂMod → 𝑊 ∈ Grp)
 
Theoremclmabl 22915 A subcomplex module is an abelian group. (Contributed by Mario Carneiro, 16-Oct-2015.)
(𝑊 ∈ ℂMod → 𝑊 ∈ Abel)
 
Theoremclmring 22916 The scalar ring of a subcomplex module is a ring. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ ℂMod → 𝐹 ∈ Ring)
 
Theoremclmfgrp 22917 The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ ℂMod → 𝐹 ∈ Grp)
 
Theoremclm0 22918 The zero of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ ℂMod → 0 = (0g𝐹))
 
Theoremclm1 22919 The identity of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ ℂMod → 1 = (1r𝐹))
 
Theoremclmadd 22920 The addition of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ ℂMod → + = (+g𝐹))
 
Theoremclmmul 22921 The multiplication of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ ℂMod → · = (.r𝐹))
 
Theoremclmcj 22922 The conjugation of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
 
Theoremisclmi 22923 Reverse direction of isclm 22910. (Contributed by Mario Carneiro, 30-Oct-2015.)
𝐹 = (Scalar‘𝑊)       ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod)
 
Theoremclmzss 22924 The scalar ring of a subcomplex module contains the integers. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂMod → ℤ ⊆ 𝐾)
 
Theoremclmsscn 22925 The scalar ring of a subcomplex module is a subset of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
 
Theoremclmsub 22926 Subtraction in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂMod ∧ 𝐴𝐾𝐵𝐾) → (𝐴𝐵) = (𝐴(-g𝐹)𝐵))
 
Theoremclmneg 22927 Negation in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂMod ∧ 𝐴𝐾) → -𝐴 = ((invg𝐹)‘𝐴))
 
Theoremclmneg1 22928 Minus one is in the scalar ring of a subcomplex module. (Contributed by AV, 28-Sep-2021.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂMod → -1 ∈ 𝐾)
 
Theoremclmabs 22929 Norm in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂMod ∧ 𝐴𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴))
 
Theoremclmacl 22930 Closure of ring addition for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
 
Theoremclmmcl 22931 Closure of ring multiplication for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 · 𝑌) ∈ 𝐾)
 
Theoremclmsubcl 22932 Closure of ring subtraction for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋𝑌) ∈ 𝐾)
 
Theoremlmhmclm 22933 The domain of a linear operator is a subcomplex module iff the range is. (Contributed by Mario Carneiro, 21-Oct-2015.)
(𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod))
 
Theoremclmvscl 22934 Closure of scalar product for a subcomplex module. Analogue of lmodvscl 18928. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂMod ∧ 𝑄𝐾𝑋𝑉) → (𝑄 · 𝑋) ∈ 𝑉)
 
Theoremclmvsass 22935 Associative law for scalar product. Analogue of lmodvsass 18936. (Contributed by Mario Carneiro, 16-Oct-2015.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 · 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
 
Theoremclmvscom 22936 Commutative law for the scalar product. (Contributed by NM, 14-Feb-2008.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → (𝑄 · (𝑅 · 𝑋)) = (𝑅 · (𝑄 · 𝑋)))
 
Theoremclmvsdir 22937 Distributive law for scalar product (right-distributivity). (lmodvsdir 18935 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    + = (+g𝑊)       ((𝑊 ∈ ℂMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 + 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋)))
 
Theoremclmvsdi 22938 Distributive law for scalar product (left-distributivity). (lmodvsdi 18934 analog.) (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)    &    + = (+g𝑊)       ((𝑊 ∈ ℂMod ∧ (𝐴𝐾𝑋𝑉𝑌𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌)))
 
Theoremclmvs1 22939 Scalar product with ring unit. (lmodvs1 18939 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ ℂMod ∧ 𝑋𝑉) → (1 · 𝑋) = 𝑋)
 
Theoremclmvs2 22940 A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) (Revised by AV, 21-Sep-2021.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → (𝐴 + 𝐴) = (2 · 𝐴))
 
Theoremclm0vs 22941 Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (lmod0vs 18944 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ ℂMod ∧ 𝑋𝑉) → (0 · 𝑋) = 0 )
 
Theoremclmopfne 22942 The (functionalized) operations of addition and multiplication by a scalar of a subcomplex module cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 3-Oct-2021.)
· = ( ·sf𝑊)    &    + = (+𝑓𝑊)       (𝑊 ∈ ℂMod → +· )
 
Theoremisclmp 22943* The predicate "is a subcomplex module." (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.)
· = ( ·𝑠𝑊)    &    + = (+g𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)       (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
 
Theoremisclmi0 22944* Properties that determine a subcomplex module. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.)
· = ( ·𝑠𝑊)    &    + = (+g𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)    &   𝑆 = (ℂflds 𝐾)    &   𝑊 ∈ Grp    &   𝐾 ∈ (SubRing‘ℂfld)    &   (𝑥𝑉 → (1 · 𝑥) = 𝑥)    &   ((𝑦𝐾𝑥𝑉) → (𝑦 · 𝑥) ∈ 𝑉)    &   ((𝑦𝐾𝑥𝑉𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))    &   ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)))    &   ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))       𝑊 ∈ ℂMod
 
Theoremclmvneg1 22945 Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (lmodvneg1 18954 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (invg𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ ℂMod ∧ 𝑋𝑉) → (-1 · 𝑋) = (𝑁𝑋))
 
Theoremclmvsneg 22946 Multiplication of a vector by a negated scalar. (lmodvsneg 18955 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.)
𝐵 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝑁 = (invg𝑊)    &   𝐾 = (Base‘𝐹)    &   (𝜑𝑊 ∈ ℂMod)    &   (𝜑𝑋𝐵)    &   (𝜑𝑅𝐾)       (𝜑 → (𝑁‘(𝑅 · 𝑋)) = (-𝑅 · 𝑋))
 
Theoremclmmulg 22947 The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015.)
𝑉 = (Base‘𝑊)    &    = (.g𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵𝑉) → (𝐴 𝐵) = (𝐴 · 𝐵))
 
Theoremclmsubdir 22948 Scalar multiplication distributive law for subtraction. (lmodsubdir 18969 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (-g𝑊)    &   (𝜑𝑊 ∈ ℂMod)    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝐾)    &   (𝜑𝑋𝑉)       (𝜑 → ((𝐴𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))
 
Theoremclmpm1dir 22949 Subtractive distributive law for the scalar product of a subcomplex module. (Contributed by NM, 31-Jul-2007.) (Revised by AV, 21-Sep-2021.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)    &   𝐾 = (Base‘(Scalar‘𝑊))       ((𝑊 ∈ ℂMod ∧ (𝐴𝐾𝐵𝐾𝐶𝑉)) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶))))
 
Theoremclmnegneg 22950 Double negative of a vector. (Contributed by NM, 6-Aug-2007.) (Revised by AV, 21-Sep-2021.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → (-1 · (-1 · 𝐴)) = 𝐴)
 
Theoremclmnegsubdi2 22951 Distribution of negative over vector subtraction. (Contributed by NM, 6-Aug-2007.) (Revised by AV, 29-Sep-2021.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (-1 · (𝐴 + (-1 · 𝐵))) = (𝐵 + (-1 · 𝐴)))
 
Theoremclmsub4 22952 Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 5-Aug-2007.) (Revised by AV, 29-Sep-2021.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)       ((𝑊 ∈ ℂMod ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))))
 
Theoremclmvsrinv 22953 A vector minus itself. (Contributed by NM, 4-Dec-2006.) (Revised by AV, 28-Sep-2021.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → (𝐴 + (-1 · 𝐴)) = 0 )
 
Theoremclmvslinv 22954 Minus a vector plus itself. (Contributed by NM, 4-Dec-2006.) (Revised by AV, 28-Sep-2021.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → ((-1 · 𝐴) + 𝐴) = 0 )
 
Theoremclmvsubval 22955 Value of vector subtraction in terms of addition in a subcomplex module. Analogue of lmodvsubval2 18966. (Contributed by NM, 31-Mar-2014.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
 
Theoremclmvsubval2 22956 Value of vector subtraction on a subcomplex module. (Contributed by Mario Carneiro, 19-Nov-2013.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    = (-g𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = ((-1 · 𝐵) + 𝐴))
 
Theoremclmvz 22957 Two ways to express the negative of a vector. (Contributed by NM, 29-Feb-2008.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝑊)    &    = (-g𝑊)    &    · = ( ·𝑠𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ ℂMod ∧ 𝐴𝑉) → ( 0 𝐴) = (-1 · 𝐴))
 
Theoremzlmclm 22958 The -module operation turns an arbitrary abelian group into a subcomplex module. (Contributed by Mario Carneiro, 30-Oct-2015.)
𝑊 = (ℤMod‘𝐺)       (𝐺 ∈ Abel ↔ 𝑊 ∈ ℂMod)
 
Theoremclmzlmvsca 22959 The scalar product of a subcomplex module matches the scalar product of the derived -module, which implies, together with zlmbas 19914 and zlmplusg 19915, that any module over is structure-equivalent to the canonical -module ℤMod‘𝐺. (Contributed by Mario Carneiro, 30-Oct-2015.)
𝑊 = (ℤMod‘𝐺)    &   𝑋 = (Base‘𝐺)       ((𝐺 ∈ ℂMod ∧ (𝐴 ∈ ℤ ∧ 𝐵𝑋)) → (𝐴( ·𝑠𝐺)𝐵) = (𝐴( ·𝑠𝑊)𝐵))
 
Theoremnmoleub2lem 22960* Lemma for nmoleub2a 22963 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
𝑁 = (𝑆 normOp 𝑇)    &   𝑉 = (Base‘𝑆)    &   𝐿 = (norm‘𝑆)    &   𝑀 = (norm‘𝑇)    &   𝐺 = (Scalar‘𝑆)    &   𝐾 = (Base‘𝐺)    &   (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))    &   (𝜑𝐴 ∈ ℝ*)    &   (𝜑𝑅 ∈ ℝ+)    &   ((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴)    &   ((((𝜑 ∧ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦𝑉𝑦 ≠ (0g𝑆))) → (𝑀‘(𝐹𝑦)) ≤ (𝐴 · (𝐿𝑦)))    &   ((𝜑𝑥𝑉) → (𝜓 → (𝐿𝑥) ≤ 𝑅))       (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 (𝜓 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
 
Theoremnmoleub2lem3 22961* Lemma for nmoleub2a 22963 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
𝑁 = (𝑆 normOp 𝑇)    &   𝑉 = (Base‘𝑆)    &   𝐿 = (norm‘𝑆)    &   𝑀 = (norm‘𝑇)    &   𝐺 = (Scalar‘𝑆)    &   𝐾 = (Base‘𝐺)    &   (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))    &   (𝜑𝐴 ∈ ℝ*)    &   (𝜑𝑅 ∈ ℝ+)    &   (𝜑 → ℚ ⊆ 𝐾)    &    · = ( ·𝑠𝑆)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵𝑉)    &   (𝜑𝐵 ≠ (0g𝑆))    &   (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴)))    &   (𝜑 → ¬ (𝑀‘(𝐹𝐵)) ≤ (𝐴 · (𝐿𝐵)))        ¬ 𝜑
 
Theoremnmoleub2lem2 22962* Lemma for nmoleub2a 22963 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
𝑁 = (𝑆 normOp 𝑇)    &   𝑉 = (Base‘𝑆)    &   𝐿 = (norm‘𝑆)    &   𝑀 = (norm‘𝑇)    &   𝐺 = (Scalar‘𝑆)    &   𝐾 = (Base‘𝐺)    &   (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))    &   (𝜑𝐴 ∈ ℝ*)    &   (𝜑𝑅 ∈ ℝ+)    &   (𝜑 → ℚ ⊆ 𝐾)    &   (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥)𝑂𝑅 → (𝐿𝑥) ≤ 𝑅))    &   (((𝐿𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿𝑥) < 𝑅 → (𝐿𝑥)𝑂𝑅))       (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥)𝑂𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
 
Theoremnmoleub2a 22963* The operator norm is the supremum of the value of a linear operator in the closed unit ball. (Contributed by Mario Carneiro, 19-Oct-2015.)
𝑁 = (𝑆 normOp 𝑇)    &   𝑉 = (Base‘𝑆)    &   𝐿 = (norm‘𝑆)    &   𝑀 = (norm‘𝑇)    &   𝐺 = (Scalar‘𝑆)    &   𝐾 = (Base‘𝐺)    &   (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))    &   (𝜑𝐴 ∈ ℝ*)    &   (𝜑𝑅 ∈ ℝ+)    &   (𝜑 → ℚ ⊆ 𝐾)       (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) ≤ 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
 
Theoremnmoleub2b 22964* The operator norm is the supremum of the value of a linear operator in the open unit ball. (Contributed by Mario Carneiro, 19-Oct-2015.)
𝑁 = (𝑆 normOp 𝑇)    &   𝑉 = (Base‘𝑆)    &   𝐿 = (norm‘𝑆)    &   𝑀 = (norm‘𝑇)    &   𝐺 = (Scalar‘𝑆)    &   𝐾 = (Base‘𝐺)    &   (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))    &   (𝜑𝐴 ∈ ℝ*)    &   (𝜑𝑅 ∈ ℝ+)    &   (𝜑 → ℚ ⊆ 𝐾)       (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) < 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
 
Theoremnmoleub3 22965* The operator norm is the supremum of the value of a linear operator on the closed unit sphere. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.)
𝑁 = (𝑆 normOp 𝑇)    &   𝑉 = (Base‘𝑆)    &   𝐿 = (norm‘𝑆)    &   𝑀 = (norm‘𝑇)    &   𝐺 = (Scalar‘𝑆)    &   𝐾 = (Base‘𝐺)    &   (𝜑𝑆 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝑇 ∈ (NrmMod ∩ ℂMod))    &   (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))    &   (𝜑𝐴 ∈ ℝ*)    &   (𝜑𝑅 ∈ ℝ+)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑 → ℝ ⊆ 𝐾)       (𝜑 → ((𝑁𝐹) ≤ 𝐴 ↔ ∀𝑥𝑉 ((𝐿𝑥) = 𝑅 → ((𝑀‘(𝐹𝑥)) / 𝑅) ≤ 𝐴)))
 
Theoremnmhmcn 22966 A linear operator over a normed subcomplex module is bounded iff it is continuous. (Contributed by Mario Carneiro, 22-Oct-2015.)
𝐽 = (TopOpen‘𝑆)    &   𝐾 = (TopOpen‘𝑇)    &   𝐺 = (Scalar‘𝑆)    &   𝐵 = (Base‘𝐺)       ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾))))
 
Theoremcmodscexp 22967 The powers of i belong to the scalar subring of a subcomplex module if i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (i↑𝑁) ∈ 𝐾)
 
Theoremcmodscmulexp 22968 The scalar product of a vector with powers of i belongs to the base set of a subcomplex module if the scalar subring of th subcomplex module contains i. (Contributed by AV, 18-Oct-2021.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &   𝑋 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ ℂMod ∧ (i ∈ 𝐾𝐵𝑋𝑁 ∈ ℕ)) → ((i↑𝑁) · 𝐵) ∈ 𝑋)
 
12.5.2  Subcomplex vector spaces

Usually, "complex vector spaces" are vector spaces over the field of the complex numbers, see for example the definition in [Roman] p. 36.

In the setting of set.mm, it is convenient to consider collectively vector spaces on subfields of the field of complex numbers. We call these, "subcomplex vector spaces" and collect them in the class ℂVec defined in df-cvs 22970 and characterized in iscvs 22973. These include rational vector spaces (qcvs 22993), real vector spaces (recvs 22992) and complex vector spaces (cncvs 22991).

This definition is analogous to the definition of subcomplex modules (and their class ℂMod), which are modules over subrings of the field of complex numbers. Note that ZZ-modules (that are roughly the same thing as Abelian groups, see zlmclm 22958) are subcomplex modules but are not subcomplex vector spaces (see zclmncvs 22994), because the ring ZZ is not a division ring (see zringndrg 19886).

Since the field of complex numbers is commutative, so are its subrings, so there is no need to explicitly state "left module" or "left vector space" for subcomplex modules or vector spaces.

 
Syntaxccvs 22969 Syntax for the class of subcomplex vector spaces.
class ℂVec
 
Definitiondf-cvs 22970 Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.)
ℂVec = (ℂMod ∩ LVec)
 
Theoremcvslvec 22971 A subcomplex vector space is a (left) vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
(𝜑𝑊 ∈ ℂVec)       (𝜑𝑊 ∈ LVec)
 
Theoremcvsclm 22972 A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019.)
(𝜑𝑊 ∈ ℂVec)       (𝜑𝑊 ∈ ℂMod)
 
Theoremiscvs 22973 A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.)
(𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))
 
Theoremiscvsp 22974* The predicate "is a subcomplex vector space." (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.)
· = ( ·𝑠𝑊)    &    + = (+g𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)       (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂflds 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))))))
 
Theoremiscvsi 22975* Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.)
· = ( ·𝑠𝑊)    &    + = (+g𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)    &   𝑊 ∈ Grp    &   𝑆 = (ℂflds 𝐾)    &   𝑆 ∈ DivRing    &   𝐾 ∈ (SubRing‘ℂfld)    &   (𝑥𝑉 → (1 · 𝑥) = 𝑥)    &   ((𝑦𝐾𝑥𝑉) → (𝑦 · 𝑥) ∈ 𝑉)    &   ((𝑦𝐾𝑥𝑉𝑧𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))    &   ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)))    &   ((𝑦𝐾𝑧𝐾𝑥𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥)))       𝑊 ∈ ℂVec
 
Theoremcvsi 22976* The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 21-Sep-2021.)
𝑋 = (Base‘𝑊)    &    + = (+g𝑊)    &   𝑆 = (Base‘(Scalar‘𝑊))    &    = ( ·sf𝑊)    &    · = ( ·𝑠𝑊)       (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
 
Theoremcvsunit 22977 Unit group of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹))
 
Theoremcvsdiv 22978 Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r𝐹)𝐵))
 
Theoremcvsdivcl 22979 The scalar field of a subcomplex vector space is closed under division. (Contributed by Thierry Arnoux, 22-May-2019.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾)
 
Theoremcvsmuleqdivd 22980 An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &   (𝜑𝑊 ∈ ℂVec)    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝐾)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐴 ≠ 0)    &   (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌))       (𝜑𝑋 = ((𝐵 / 𝐴) · 𝑌))
 
Theoremcvsdiveqd 22981 An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
𝑉 = (Base‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &   (𝜑𝑊 ∈ ℂVec)    &   (𝜑𝐴𝐾)    &   (𝜑𝐵𝐾)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝑋 = ((𝐴 / 𝐵) · 𝑌))       (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌)
 
Theoremcnlmodlem1 22982 Lemma 1 for cnlmod 22986. (Contributed by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       (Base‘𝑊) = ℂ
 
Theoremcnlmodlem2 22983 Lemma 2 for cnlmod 22986. (Contributed by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       (+g𝑊) = +
 
Theoremcnlmodlem3 22984 Lemma 3 for cnlmod 22986. (Contributed by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       (Scalar‘𝑊) = ℂfld
 
Theoremcnlmod4 22985 Lemma 4 for cnlmod 22986. (Contributed by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       ( ·𝑠𝑊) = ·
 
Theoremcnlmod 22986 The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       𝑊 ∈ LMod
 
Theoremcnstrcvs 22987 The set of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 20-Sep-2021.)
𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})       𝑊 ∈ ℂVec
 
Theoremcnrbas 22988 The set of complex numbers is the base set of the complex left module of complex numbers. (Contributed by AV, 21-Sep-2021.)
𝐶 = (ringLMod‘ℂfld)       (Base‘𝐶) = ℂ
 
Theoremcnrlmod 22989 The complex left module of complex numbers is a left module. The vector operation is +, and the scalar product is ·. (Contributed by AV, 21-Sep-2021.)
𝐶 = (ringLMod‘ℂfld)       𝐶 ∈ LMod
 
Theoremcnrlvec 22990 The complex left module of complex numbers is a left vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 21-Sep-2021.)
𝐶 = (ringLMod‘ℂfld)       𝐶 ∈ LVec
 
Theoremcncvs 22991 The complex left module of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 21-Sep-2021.)
𝐶 = (ringLMod‘ℂfld)       𝐶 ∈ ℂVec
 
Theoremrecvs 22992 The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.)
𝑅 = (ringLMod‘ℝfld)       𝑅 ∈ ℂVec
 
Theoremqcvs 22993 The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.)
𝑄 = (ringLMod‘(ℂflds ℚ))       𝑄 ∈ ℂVec
 
Theoremzclmncvs 22994 The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.)
𝑍 = (ringLMod‘ℤring)       (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec)
 
12.5.3  Normed subcomplex vector spaces

This section characterizes normed subcomplex vector spaces as subcomplex vector spaces which are also normed vector spaces (that is, normed groups with a positively homogeneous norm). For the moment, there is no need of a special token to represent their class, so we only use the characterization isncvsngp 22995. Most theorems for normed subcomplex vector spaces have a label containing "ncvs". The idiom 𝑊 ∈ (NrmVec ∩ ℂVec) is used in the following to say that 𝑊 is a normed subcomplex vector space, i.e. a subcomplex vector space which is also a normed vector space.

 
Theoremisncvsngp 22995* A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
 
Theoremisncvsngpd 22996* Properties that determine a normed subcomplex vector space. (Contributed by NM, 15-Apr-2007.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &   (𝜑𝑊 ∈ ℂVec)    &   (𝜑𝑊 ∈ NrmGrp)    &   ((𝜑 ∧ (𝑥𝑉𝑘𝐾)) → (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))       (𝜑𝑊 ∈ (NrmVec ∩ ℂVec))
 
Theoremncvsi 22997* The properties of a normed subcomplex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (-g𝑊)    &    0 = (0g𝑊)       (𝑊 ∈ (NrmVec ∩ ℂVec) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
 
Theoremncvsprp 22998 Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝐾𝐵𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
 
Theoremncvsge0 22999 The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008.) (Revised by AV, 8-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴 ∈ (𝐾 ∩ ℝ) ∧ 0 ≤ 𝐴) ∧ 𝐵𝑉) → (𝑁‘(𝐴 · 𝐵)) = (𝐴 · (𝑁𝐵)))
 
Theoremncvsm1 23000 The norm of the negative of a vector. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 8-Oct-2021.)
𝑉 = (Base‘𝑊)    &   𝑁 = (norm‘𝑊)    &    · = ( ·𝑠𝑊)       ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
  Copyright terms: Public domain < Previous  Next >