HomeHome Metamath Proof Explorer
Theorem List (p. 23 of 431)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28082)
  Hilbert Space Explorer  Hilbert Space Explorer
(28083-29607)
  Users' Mathboxes  Users' Mathboxes
(29608-43062)
 

Theorem List for Metamath Proof Explorer - 2201-2300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2sp 2201 A double specialization (see sp 2198). Another double specialization, closer to PM*11.1, is 2stdpc4 2489. (Contributed by BJ, 15-Sep-2018.)
(∀𝑥𝑦𝜑𝜑)
 
Theoremspsd 2202 Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
Theorem19.2g 2203 Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. Use 19.2 2056 when sufficient. (Contributed by Mel L. O'Cat, 31-Mar-2008.)
(∀𝑥𝜑 → ∃𝑦𝜑)
 
Theorem19.21bi 2204 Inference form of 19.21 2220 and also deduction form of sp 2198. (Contributed by NM, 26-May-1993.)
(𝜑 → ∀𝑥𝜓)       (𝜑𝜓)
 
Theorem19.21bbi 2205 Inference removing double quantifier. Version of 19.21bi 2204 with two quanditiers. (Contributed by NM, 20-Apr-1994.)
(𝜑 → ∀𝑥𝑦𝜓)       (𝜑𝜓)
 
Theorem19.23bi 2206 Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2225. (Contributed by NM, 12-Mar-1993.)
(∃𝑥𝜑𝜓)       (𝜑𝜓)
 
Theoremnexr 2207 Inference associated with the contrapositive of 19.8a 2197. (Contributed by Jeff Hankins, 26-Jul-2009.)
¬ ∃𝑥𝜑        ¬ 𝜑
 
Theoremqexmid 2208 Quantified excluded middle (see exmid 430). Also known as the drinker paradox (if 𝜑(𝑥) is interpreted as "𝑥 drinks", then this theorem tells that there exists a person such that, if this person drinks, then everyone drinks). Exercise 9.2a of Boolos, p. 111, Computability and Logic. (Contributed by NM, 10-Dec-2000.)
𝑥(𝜑 → ∀𝑥𝜑)
 
Theoremnf5r 2209 Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.) df-nf 1857 changed. (Revised by Wolf Lammen, 11-Sep-2021.)
(Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
 
Theoremnf5ri 2210 Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       (𝜑 → ∀𝑥𝜑)
 
Theoremnf5rd 2211 Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝜑 → Ⅎ𝑥𝜓)       (𝜑 → (𝜓 → ∀𝑥𝜓))
 
Theoremnfim1 2212 A closed form of nfim 1972. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) df-nf 1857 changed. (Revised by Wolf Lammen, 18-Sep-2021.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       𝑥(𝜑𝜓)
 
Theoremnfan1 2213 A closed form of nfan 1975. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1857 changed. (Revised by Wolf Lammen, 18-Sep-2021.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       𝑥(𝜑𝜓)
 
Theorem19.3 2214 A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. See 19.3v 2061 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑       (∀𝑥𝜑𝜑)
 
Theorem19.9d 2215 A deduction version of one direction of 19.9 2217. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.) df-nf 1857 changed. (Revised by Wolf Lammen, 11-Sep-2021.)
(𝜓 → Ⅎ𝑥𝜑)       (𝜓 → (∃𝑥𝜑𝜑))
 
Theorem19.9t 2216 A closed version of 19.9 2217. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) (Proof shortened by Wolf Lammen, 14-Jul-2020.)
(Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
 
Theorem19.9 2217 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. See 19.9v 2060 for a version requiring fewer axioms. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.)
𝑥𝜑       (∃𝑥𝜑𝜑)
 
Theorem19.21t 2218 Closed form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2220. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) df-nf 1857 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 3-Nov-2021.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theorem19.21tOLDOLD 2219 Obsolete proof of 19.21t 2218 as of 3-Nov-2021. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) df-nf 1857 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theorem19.21 2220 Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑." See 19.21v 2015 for a version requiring fewer axioms. See also 19.21h 2266. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) df-nf 1857 changed. (Revised by Wolf Lammen, 18-Sep-2021.)
𝑥𝜑       (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
 
Theoremstdpc5 2221 An axiom scheme of standard predicate calculus that emulates Axiom 5 of [Mendelson] p. 69. The hypothesis 𝑥𝜑 can be thought of as emulating "𝑥 is not free in 𝜑." With this definition, the meaning of "not free" is less restrictive than the usual textbook definition; for example 𝑥 would not (for us) be free in 𝑥 = 𝑥 by nfequid 2093. This theorem scheme can be proved as a metatheorem of Mendelson's axiom system, even though it is slightly stronger than his Axiom 5. See stdpc5v 2014 for a version requiring fewer axioms. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) Remove dependency on ax-10 2166. (Revised by Wolf Lammen, 4-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
 
Theoremstdpc5OLD 2222 Obsolete proof of stdpc5 2221 as of 11-Oct-2021. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) Remove dependency on ax-10 2166. (Revised by Wolf Lammen, 4-Jul-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
 
Theorem19.21-2 2223 Version of 19.21 2220 with two quantifiers. (Contributed by NM, 4-Feb-2005.)
𝑥𝜑    &   𝑦𝜑       (∀𝑥𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝑦𝜓))
 
Theorem19.23t 2224 Closed form of Theorem 1977.23 of [Margaris] p. 90. See 19.23 2225. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) (Proof shortened by Wolf Lammen, 13-Aug-2020.) df-nf 1857 changed. (Revised by Wolf Lammen, 11-Sep-2021.)
(Ⅎ𝑥𝜓 → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
 
Theorem19.23 2225 Theorem 19.23 of [Margaris] p. 90. See 19.23v 2018 for a version requiring fewer axioms. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theoremalimd 2226 Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1885. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
Theoremalrimi 2227 Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2220. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑𝜓)       (𝜑 → ∀𝑥𝜓)
 
Theoremalrimdd 2228 Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2220. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremalrimd 2229 Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2220. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   𝑥𝜓    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremeximd 2230 Deduction form of Theorem 19.22 of [Margaris] p. 90, see exim 1908. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theoremexlimi 2231 Inference associated with 19.23 2225. See exlimiv 2005 for a version with a dv condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜓    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexlimd 2232 Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremexlimdd 2233 Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → ∃𝑥𝜓)    &   ((𝜑𝜓) → 𝜒)       (𝜑𝜒)
 
Theoremnexd 2234 Deduction for generalization rule for negated wff. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝜓)
 
Theoremalbid 2235 Formula-building rule for universal quantifier (deduction rule). (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
 
Theoremexbid 2236 Formula-building rule for existential quantifier (deduction rule). (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremnfbidf 2237 An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) df-nf 1857 changed. (Revised by Wolf Lammen, 18-Sep-2021.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒))
 
Theorem19.16 2238 Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∀𝑥𝜓))
 
Theorem19.17 2239 Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜓       (∀𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorem19.27 2240 Theorem 19.27 of [Margaris] p. 90. See 19.27v 2071 for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993.)
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.28 2241 Theorem 19.28 of [Margaris] p. 90. See 19.28v 2072 for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
 
Theorem19.19 2242 Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∃𝑥𝜓))
 
Theorem19.36 2243 Theorem 19.36 of [Margaris] p. 90. See 19.36v 2067 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.36i 2244 Inference associated with 19.36 2243. See 19.36iv 2021 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.)
𝑥𝜓    &   𝑥(𝜑𝜓)       (∀𝑥𝜑𝜓)
 
Theorem19.37 2245 Theorem 19.37 of [Margaris] p. 90. See 19.37v 2073 for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
 
Theorem19.32 2246 Theorem 19.32 of [Margaris] p. 90. See 19.32v 2016 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑       (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))
 
Theorem19.31 2247 Theorem 19.31 of [Margaris] p. 90. See 19.31v 2017 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.)
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.41 2248 Theorem 19.41 of [Margaris] p. 90. See 19.41v 2024 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.42-1 2249 One direction of 19.42 2250. (Contributed by Wolf Lammen, 10-Jul-2021.)
𝑥𝜑       ((𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.42 2250 Theorem 19.42 of [Margaris] p. 90. See 19.42v 2028 for a version requiring fewer axioms. See exan 1935 for an immediate version. (Contributed by NM, 18-Aug-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
 
Theorem19.44 2251 Theorem 19.44 of [Margaris] p. 90. See 19.44v 2075 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.45 2252 Theorem 19.45 of [Margaris] p. 90. See 19.45v 2076 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
 
Theoremequsalv 2253* Version of equsal 2434 with a dv condition, which does not require ax-13 2389. See equsalvw 2084 for a version with two dv conditions requiring fewer axioms. See also the dual form equsexv 2254. (Contributed by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremequsexv 2254* Version of equsex 2435 with a dv condition, which does not require ax-13 2389. See equsexvw 2085 for a version with two dv conditions requiring fewer axioms. See also the dual form equsalv 2253. (Contributed by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremsbequ1 2255 An equality theorem for substitution. (Contributed by NM, 16-May-1993.)
(𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
 
Theoremsbequ12 2256 An equality theorem for substitution. (Contributed by NM, 14-May-1993.)
(𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
 
Theoremsbequ12r 2257 An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
(𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
 
Theoremsbequ12a 2258 An equality theorem for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 23-Jun-2019.)
(𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑))
 
Theoremsbid 2259 An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 30-Sep-2018.)
([𝑥 / 𝑥]𝜑𝜑)
 
Theoremspimv1 2260* Version of spim 2397 with a dv condition, which does not require ax-13 2389. See spimvw 2080 for a version with two dv conditions, requiring fewer axioms, and spimv 2400 for another variant. (Contributed by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremnf5 2261 Alternate definition of df-nf 1857. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1857 changed. (Revised by Wolf Lammen, 11-Sep-2021.)
(Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
 
Theoremnf6 2262 An alternate definition of df-nf 1857. (Contributed by Mario Carneiro, 24-Sep-2016.)
(Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑𝜑))
 
Theoremnf5d 2263 Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
Theoremnf5di 2264 Since the converse holds by a1i 11, this inference shows that we can represent a not-free hypothesis with either 𝑥𝜑 (inference form) or (𝜑 → Ⅎ𝑥𝜑) (deduction form). (Contributed by NM, 17-Aug-2018.) (Proof shortened by Wolf Lammen, 10-Jul-2019.)
(𝜑 → Ⅎ𝑥𝜑)       𝑥𝜑
 
Theorem19.9h 2265 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 5-Jan-2018.) (Proof shortened by Wolf Lammen, 14-Jul-2020.)
(𝜑 → ∀𝑥𝜑)       (∃𝑥𝜑𝜑)
 
Theorem19.21h 2266 Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑." See also 19.21 2220 and 19.21v 2015. (Contributed by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
(𝜑 → ∀𝑥𝜑)       (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
 
Theorem19.23h 2267 Theorem 19.23 of [Margaris] p. 90. See 19.23 2225. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
(𝜓 → ∀𝑥𝜓)       (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theoremequsalhw 2268* Weaker version of equsalh 2437 with a dv condition which does not require ax-13 2389. (Contributed by NM, 29-Nov-2015.) (Proof shortened by Wolf Lammen, 28-Dec-2017.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremequsexhv 2269* Version of equsexh 2438 with a dv condition, which does not require ax-13 2389. (Contributed by BJ, 31-May-2019.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremhbim1 2270 A closed form of hbim 2272. (Contributed by NM, 2-Jun-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremhbimd 2271 Deduction form of bound-variable hypothesis builder hbim 2272. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 3-Jan-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))       (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
 
Theoremhbim 2272 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 3-Mar-2008.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)       ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremhban 2273 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)       ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremhb3an 2274 If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑𝜓𝜒). (Contributed by NM, 14-Sep-2003.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝜒 → ∀𝑥𝜒)       ((𝜑𝜓𝜒) → ∀𝑥(𝜑𝜓𝜒))
 
Theoremaxc4 2275 Show that the original axiom ax-c4 34671 can be derived from ax-4 1884 (alim 1885), ax-10 2166 (hbn1 2167), sp 2198 and propositional calculus. See ax4fromc4 34681 for the rederivation of ax-4 1884 from ax-c4 34671.

Part of the proof is based on the proof of Lemma 22 of [Monk2] p. 114. (Contributed by NM, 21-May-2008.) (Proof modification is discouraged.)

(∀𝑥(∀𝑥𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theoremaxc4i 2276 Inference version of axc4 2275. (Contributed by NM, 3-Jan-1993.)
(∀𝑥𝜑𝜓)       (∀𝑥𝜑 → ∀𝑥𝜓)
 
Theoremaxc7 2277 Show that the original axiom ax-c7 34672 can be derived from ax-10 2166 (hbn1 2167) , sp 2198 and propositional calculus. See ax10fromc7 34682 for the rederivation of ax-10 2166 from ax-c7 34672.

Normally, axc7 2277 should be used rather than ax-c7 34672, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.)

(¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
 
Theoremaxc7e 2278 Abbreviated version of axc7 2277 using the existential quantifier. (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝑥𝜑𝜑)
 
Theoremaxc16g 2279* Generalization of axc16 2280. Use the latter when sufficient. This proof only requires, on top of { ax-1 6-- ax-7 2088 }, theorem ax12v 2195. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 18-Feb-2018.) Remove dependency on ax-13 2389, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) (Revised by BJ, 7-Jul-2021.) Shorten axc11rv 2284. (Revised by Wolf Lammen, 11-Oct-2021.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
 
Theoremaxc16 2280* Proof of older axiom ax-c16 34679. (Contributed by NM, 8-Nov-2006.) (Revised by NM, 22-Sep-2017.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Theoremaxc16gb 2281* Biconditional strengthening of axc16g 2279. (Contributed by NM, 15-May-1993.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑))
 
Theoremaxc16nf 2282* If dtru 5004 is false, then there is only one element in the universe, so everything satisfies . (Contributed by Mario Carneiro, 7-Oct-2016.) Remove dependency on ax-11 2181. (Revised by Wolf Lammen, 9-Sep-2018.) (Proof shortened by BJ, 14-Jun-2019.) Remove dependency on ax-10 2166. (Revised by Wolf lammen, 12-Oct-2021.)
(∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
 
Theoremaxc11v 2283* Version of axc11 2454 with a disjoint variable condition on 𝑥 and 𝑦, which is provable, on top of { ax-1 6-- ax-7 2088 }, from ax12v 2195 (contrary to axc11 2454 which seems to require the full ax-12 2194 and ax-13 2389). (Contributed by BJ, 6-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Theoremaxc11rv 2284* Version of axc11r 2330 with a disjoint variable condition on 𝑥 and 𝑦, which is provable, on top of { ax-1 6-- ax-7 2088 }, from ax12v 2195 (contrary to axc11 2454 which seems to require the full ax-12 2194). (Contributed by BJ, 6-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑))
 
Theoremaxc11rvOLD 2285* Obsolete proof of axc11rv 2284 as of 11-Oct-2021. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑))
 
Theoremaxc11vOLD 2286* Obsolete proof of axc11v 2283 as of 11-Oct-2021. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Theoremmodal-b 2287 The analogue in our predicate calculus of the Brouwer axiom (B) of modal logic S5. (Contributed by NM, 5-Oct-2005.)
(𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑)
 
Theorem19.9ht 2288 A closed version of 19.9h 2265. (Contributed by NM, 13-May-1993.) (Proof shortened by Wolf Lammen, 3-Mar-2018.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑𝜑))
 
Theoremhbnt 2289 Closed theorem version of bound-variable hypothesis builder hbn 2291. (Contributed by NM, 10-May-1993.) (Proof shortened by Wolf Lammen, 3-Mar-2018.) (Proof shortened by Wolf Lammen, 14-Oct-2021.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
 
TheoremhbntOLD 2290 Obsolete proof of hbnt 2289 as of 13-Oct-2021. (Contributed by NM, 10-May-1993.) (Proof shortened by Wolf Lammen, 3-Mar-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
 
Theoremhbn 2291 If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 17-Dec-2017.)
(𝜑 → ∀𝑥𝜑)       𝜑 → ∀𝑥 ¬ 𝜑)
 
Theoremhbnd 2292 Deduction form of bound-variable hypothesis builder hbn 2291. (Contributed by NM, 3-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓))
 
Theoremexlimih 2293 Inference associated with 19.23 2225. See exlimiv 2005 for a version with a dv condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
(𝜓 → ∀𝑥𝜓)    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexlimdh 2294 Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-Jan-1997.)
(𝜑 → ∀𝑥𝜑)    &   (𝜒 → ∀𝑥𝜒)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremsb56 2295* Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 2045. The implication "to the left" is equs4 2433 and does not require any dv condition (but the version with a dv condition, equs4v 2083, requires fewer axioms). Theorem equs45f 2485 replaces the dv condition with a non-freeness hypothesis and equs5 2486 replaces it with a distinctor as antecedent. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2254 in place of equsex 2435 in order to remove dependency on ax-13 2389. (Revised by BJ, 20-Dec-2020.)
(∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremhba1 2296 The setvar 𝑥 is not free in 𝑥𝜑. This corresponds to the axiom (4) of modal logic. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Wolf Lammen, 15-Dec-2017.) (Proof shortened by Wolf Lammen, 12-Oct-2021.)
(∀𝑥𝜑 → ∀𝑥𝑥𝜑)
 
TheoremhbexOLD 2297 Obsolete proof of hbex 2301 as of 16-Oct-2021. (Contributed by NM, 12-Mar-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)       (∃𝑦𝜑 → ∀𝑥𝑦𝜑)
 
Theoremnfal 2298 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       𝑥𝑦𝜑
 
Theoremnfex 2299 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2299, hbex 2301. (Revised by Wolf Lammen, 16-Oct-2021.)
𝑥𝜑       𝑥𝑦𝜑
 
TheoremnfexOLD 2300 Obsolete proof of nfex 2299 as of 16-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜑       𝑥𝑦𝜑
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43062
  Copyright terms: Public domain < Previous  Next >