HomeHome Metamath Proof Explorer
Theorem List (p. 211 of 429)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27903)
  Hilbert Space Explorer  Hilbert Space Explorer
(27904-29428)
  Users' Mathboxes  Users' Mathboxes
(29429-42879)
 

Theorem List for Metamath Proof Explorer - 21001-21100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremislpi 21001 A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007.)
𝑋 = 𝐽       (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))
 
Theoremcldlp 21002 A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆))
 
Theoremisperf 21003 Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝑋 = 𝐽       (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋))
 
Theoremisperf2 21004 Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝑋 = 𝐽       (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
 
Theoremisperf3 21005* A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝑋 = 𝐽       (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
 
Theoremperflp 21006 The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝑋 = 𝐽       (𝐽 ∈ Perf → ((limPt‘𝐽)‘𝑋) = 𝑋)
 
Theoremperfi 21007 Property of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝑋 = 𝐽       ((𝐽 ∈ Perf ∧ 𝑃𝑋) → ¬ {𝑃} ∈ 𝐽)
 
Theoremperftop 21008 A perfect space is a topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝐽 ∈ Perf → 𝐽 ∈ Top)
 
12.1.7  Subspace topologies
 
Theoremrestrcl 21009 Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))
 
Theoremrestbas 21010 A subspace topology basis is a basis. 𝑌 is normally a subset of the base set of 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.)
(𝐵 ∈ TopBases → (𝐵t 𝐴) ∈ TopBases)
 
Theoremtgrest 21011 A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴))
 
Theoremresttop 21012 A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
 
Theoremresttopon 21013 A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
 
Theoremrestuni 21014 The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
 
Theoremstoig 21015 The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), (𝐽t 𝐴)⟩} ∈ TopSp)
 
Theoremrestco 21016 Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (𝐽t (𝐴𝐵)))
 
Theoremrestabs 21017 Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))
 
Theoremrestin 21018 When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.)
𝑋 = 𝐽       ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = (𝐽t (𝐴𝑋)))
 
Theoremrestuni2 21019 The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐴𝑋) = (𝐽t 𝐴))
 
Theoremresttopon2 21020 The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ (TopOn‘(𝐴𝑋)))
 
Theoremrest0 21021 The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.)
(𝐽 ∈ Top → (𝐽t ∅) = {∅})
 
Theoremrestsn 21022 The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
(𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})
 
Theoremrestsn2 21023 The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t {𝐴}) = 𝒫 {𝐴})
 
Theoremrestcld 21024* A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 15-Dec-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
 
Theoremrestcldi 21025 A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝑋 = 𝐽       ((𝐴𝑋𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → 𝐵 ∈ (Clsd‘(𝐽t 𝐴)))
 
Theoremrestcldr 21026 A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽))
 
Theoremrestopnb 21027 If 𝐵 is an open subset of the subspace base set 𝐴, then any subset of 𝐵 is open iff it is open in 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
(((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽𝐶 ∈ (𝐽t 𝐴)))
 
Theoremssrest 21028 If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐾𝑉𝐽𝐾) → (𝐽t 𝐴) ⊆ (𝐾t 𝐴))
 
Theoremrestopn2 21029 The if 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))
 
Theoremrestdis 21030 A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)
 
Theoremrestfpw 21031 The restriction of the set of finite subsets of 𝐴 is the set of finite subsets of 𝐵. (Contributed by Mario Carneiro, 18-Sep-2015.)
((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin))
 
Theoremneitr 21032 The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))
 
Theoremrestcls 21033 A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
𝑋 = 𝐽    &   𝐾 = (𝐽t 𝑌)       ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
 
Theoremrestntr 21034 An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 21033 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
𝑋 = 𝐽    &   𝐾 = (𝐽t 𝑌)       ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
 
Theoremrestlp 21035 The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝑋 = 𝐽    &   𝐾 = (𝐽t 𝑌)       ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌))
 
Theoremrestperf 21036 Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝑋 = 𝐽    &   𝐾 = (𝐽t 𝑌)       ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌)))
 
Theoremperfopn 21037 An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝑋 = 𝐽    &   𝐾 = (𝐽t 𝑌)       ((𝐽 ∈ Perf ∧ 𝑌𝐽) → 𝐾 ∈ Perf)
 
Theoremresstopn 21038 The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.)
𝐻 = (𝐾s 𝐴)    &   𝐽 = (TopOpen‘𝐾)       (𝐽t 𝐴) = (TopOpen‘𝐻)
 
Theoremresstps 21039 A restricted topological space is a topological space. Note that this theorem would not be true if TopSp was defined directly in terms of the TopSet slot instead of the TopOpen derived function. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐾 ∈ TopSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ TopSp)
 
12.1.8  Order topology
 
Theoremordtbaslem 21040* Lemma for ordtbas 21044. In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅    &   𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})       (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴)
 
Theoremordtval 21041* Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅    &   𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})    &   𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})       (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
 
Theoremordtuni 21042* Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅    &   𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})    &   𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})       (𝑅𝑉𝑋 = ({𝑋} ∪ (𝐴𝐵)))
 
Theoremordtbas2 21043* Lemma for ordtbas 21044. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅    &   𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})    &   𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})    &   𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})       (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
 
Theoremordtbas 21044* In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅    &   𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})    &   𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})    &   𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})       (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶))
 
Theoremordttopon 21045 Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅       (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
 
Theoremordtopn1 21046* An upward ray (𝑃, +∞) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅       ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅))
 
Theoremordtopn2 21047* A downward ray (-∞, 𝑃) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅       ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅))
 
Theoremordtopn3 21048* An open interval (𝐴, 𝐵) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅       ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅))
 
Theoremordtcld1 21049* A downward ray (-∞, 𝑃] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅       ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)))
 
Theoremordtcld2 21050* An upward ray [𝑃, +∞) is closed. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅       ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
 
Theoremordtcld3 21051* A closed interval [𝐴, 𝐵] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝑋 = dom 𝑅       ((𝑅𝑉𝐴𝑋𝐵𝑋) → {𝑥𝑋 ∣ (𝐴𝑅𝑥𝑥𝑅𝐵)} ∈ (Clsd‘(ordTop‘𝑅)))
 
Theoremordttop 21052 The order topology is a topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝑅𝑉 → (ordTop‘𝑅) ∈ Top)
 
Theoremordtcnv 21053 The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝑅 ∈ PosetRel → (ordTop‘𝑅) = (ordTop‘𝑅))
 
Theoremordtrest 21054 The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.)
((𝑅 ∈ PosetRel ∧ 𝐴𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
 
Theoremordtrest2lem 21055* Lemma for ordtrest2 21056. (Contributed by Mario Carneiro, 9-Sep-2015.)
𝑋 = dom 𝑅    &   (𝜑𝑅 ∈ TosetRel )    &   (𝜑𝐴𝑋)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)       (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
 
Theoremordtrest2 21056* An interval-closed set 𝐴 in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in , but in other sets like there are interval-closed sets like (π, +∞) ∩ ℚ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.)
𝑋 = dom 𝑅    &   (𝜑𝑅 ∈ TosetRel )    &   (𝜑𝐴𝑋)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)       (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = ((ordTop‘𝑅) ↾t 𝐴))
 
Theoremletopon 21057 The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
(ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
 
Theoremletop 21058 The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
(ordTop‘ ≤ ) ∈ Top
 
Theoremletopuni 21059 The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
* = (ordTop‘ ≤ )
 
Theoremxrstopn 21060 The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.)
(ordTop‘ ≤ ) = (TopOpen‘ℝ*𝑠)
 
Theoremxrstps 21061 The extended real number structure is a topological space. (Contributed by Mario Carneiro, 21-Aug-2015.)
*𝑠 ∈ TopSp
 
Theoremleordtvallem1 21062* Lemma for leordtval 21065. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))       𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
 
Theoremleordtvallem2 21063* Lemma for leordtval 21065. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))    &   𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))       𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
 
Theoremleordtval2 21064 The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))    &   𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))       (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))
 
Theoremleordtval 21065 The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))    &   𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))    &   𝐶 = ran (,)       (ordTop‘ ≤ ) = (topGen‘((𝐴𝐵) ∪ 𝐶))
 
Theoremiccordt 21066 A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ ))
 
Theoremiocpnfordt 21067 An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝐴(,]+∞) ∈ (ordTop‘ ≤ )
 
Theoremicomnfordt 21068 An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
(-∞[,)𝐴) ∈ (ordTop‘ ≤ )
 
Theoremiooordt 21069 An open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝐴(,)𝐵) ∈ (ordTop‘ ≤ )
 
Theoremreordt 21070 The real numbers are an open set in the topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
ℝ ∈ (ordTop‘ ≤ )
 
Theoremlecldbas 21071 The set of closed intervals forms a closed subbasis for the topology on the extended reals. Since our definition of a basis is in terms of open sets, we express this by showing that the complements of closed intervals form an open subbasis for the topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
𝐹 = (𝑥 ∈ ran [,] ↦ (ℝ*𝑥))       (ordTop‘ ≤ ) = (topGen‘(fi‘ran 𝐹))
 
Theorempnfnei 21072* A neighborhood of +∞ contains an unbounded interval based at a real number. Together with xrtgioo 22656 (which describes neighborhoods of ) and mnfnei 21073, this gives all "negative" topological information ensuring that it is not too fine (and of course iooordt 21069 and similar ensure that it has all the sets we want). (Contributed by Mario Carneiro, 3-Sep-2015.)
((𝐴 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
 
Theoremmnfnei 21073* A neighborhood of -∞ contains an unbounded interval based at a real number. (Contributed by Mario Carneiro, 3-Sep-2015.)
((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
 
Theoremordtrestixx 21074* The restriction of the less than order to an interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.)
𝐴 ⊆ ℝ*    &   ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)       ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
 
Theoremordtresticc 21075 The restriction of the less than order to a closed interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.)
((ordTop‘ ≤ ) ↾t (𝐴[,]𝐵)) = (ordTop‘( ≤ ∩ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
 
12.1.9  Limits and continuity in topological spaces
 
Syntaxccn 21076 Extend class notation with the class of continuous functions between topologies.
class Cn
 
Syntaxccnp 21077 Extend class notation with the class of functions between topologies continuous at a given point.
class CnP
 
Syntaxclm 21078 Extend class notation with a function on topological spaces whose value is the convergence relation for limit sequences in the space.
class 𝑡
 
Definitiondf-cn 21079* Define a function on two topologies whose value is the set of continuous mappings from the first topology to the second. Based on definition of continuous function in [Munkres] p. 102. See iscn 21087 for the predicate form. (Contributed by NM, 17-Oct-2006.)
Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
 
Definitiondf-cnp 21080* Define a function on two topologies whose value is the set of continuous mappings at a specified point in the first topology. Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.)
CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
 
Definitiondf-lm 21081* Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although 𝑓 is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function (𝑥 ∈ ℝ ↦ (sin‘(π · 𝑥))) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
 
Theoremlmrel 21082 The topological space convergence relation is a relation. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Rel (⇝𝑡𝐽)
 
Theoremlmrcl 21083 Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
(𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
 
Theoremlmfval 21084* The relation "sequence 𝑓 converges to point 𝑦 " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
(𝐽 ∈ (TopOn‘𝑋) → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
 
Theoremcnfval 21085* The set of all continuous functions from topology 𝐽 to topology 𝐾. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
 
Theoremcnpfval 21086* The function mapping the points in a topology 𝐽 to the set of all functions from 𝐽 to topology 𝐾 continuous at that point. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
 
Theoremiscn 21087* The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾." Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
 
Theoremcnpval 21088* The set of all functions from topology 𝐽 to topology 𝐾 that are continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 ((𝑓𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑓𝑥) ⊆ 𝑦))})
 
Theoremiscnp 21089* The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃." Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
 
Theoremiscn2 21090* The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾." Definition of continuous function in [Munkres] p. 102. (Contributed by Mario Carneiro, 21-Aug-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
 
Theoremiscnp2 21091* The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃." Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Mario Carneiro, 21-Aug-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
 
Theoremcntop1 21092 Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
(𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
 
Theoremcntop2 21093 Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
(𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
 
Theoremcnptop1 21094 Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.)
(𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
 
Theoremcnptop2 21095 Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.)
(𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
 
Theoremiscnp3 21096* The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃." (Contributed by NM, 15-May-2007.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
 
Theoremcnprcl 21097 Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.)
𝑋 = 𝐽       (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
 
Theoremcnf 21098 A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
 
Theoremcnpf 21099 A continuous function at point 𝑃 is a mapping. (Contributed by FL, 17-Nov-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋𝑌)
 
Theoremcnpcl 21100 The value of a continuous function from 𝐽 to 𝐾 at point 𝑃 belongs to the underlying set of topology 𝐾. (Contributed by FL, 27-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾       ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ 𝑌)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
  Copyright terms: Public domain < Previous  Next >