![]() |
Metamath
Proof Explorer Theorem List (p. 211 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | islpi 21001 | A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃 ∈ 𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) | ||
Theorem | cldlp 21002 | A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆)) | ||
Theorem | isperf 21003 | Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) | ||
Theorem | isperf2 21004 | Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) | ||
Theorem | isperf3 21005* | A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) | ||
Theorem | perflp 21006 | The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf → ((limPt‘𝐽)‘𝑋) = 𝑋) | ||
Theorem | perfi 21007 | Property of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Perf ∧ 𝑃 ∈ 𝑋) → ¬ {𝑃} ∈ 𝐽) | ||
Theorem | perftop 21008 | A perfect space is a topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ (𝐽 ∈ Perf → 𝐽 ∈ Top) | ||
Theorem | restrcl 21009 | Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) | ||
Theorem | restbas 21010 | A subspace topology basis is a basis. 𝑌 is normally a subset of the base set of 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ (𝐵 ∈ TopBases → (𝐵 ↾t 𝐴) ∈ TopBases) | ||
Theorem | tgrest 21011 | A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (topGen‘(𝐵 ↾t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴)) | ||
Theorem | resttop 21012 | A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) | ||
Theorem | resttopon 21013 | A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | ||
Theorem | restuni 21014 | The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) | ||
Theorem | stoig 21015 | The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) | ||
Theorem | restco 21016 | Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = (𝐽 ↾t (𝐴 ∩ 𝐵))) | ||
Theorem | restabs 21017 | Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) | ||
Theorem | restin 21018 | When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) | ||
Theorem | restuni2 21019 | The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) | ||
Theorem | resttopon2 21020 | The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋))) | ||
Theorem | rest0 21021 | The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) | ||
Theorem | restsn 21022 | The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) | ||
Theorem | restsn2 21023 | The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) | ||
Theorem | restcld 21024* | A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘(𝐽 ↾t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥 ∩ 𝑆))) | ||
Theorem | restcldi 21025 | A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) | ||
Theorem | restcldr 21026 | A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽)) | ||
Theorem | restopnb 21027 | If 𝐵 is an open subset of the subspace base set 𝐴, then any subset of 𝐵 is open iff it is open in 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ 𝐶 ∈ (𝐽 ↾t 𝐴))) | ||
Theorem | ssrest 21028 | If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) | ||
Theorem | restopn2 21029 | The if 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) | ||
Theorem | restdis 21030 | A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) | ||
Theorem | restfpw 21031 | The restriction of the set of finite subsets of 𝐴 is the set of finite subsets of 𝐵. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin)) | ||
Theorem | neitr 21032 | The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((nei‘(𝐽 ↾t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴)) | ||
Theorem | restcls 21033 | A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) | ||
Theorem | restntr 21034 | An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 21033 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋 ∖ 𝑌))) ∩ 𝑌)) | ||
Theorem | restlp 21035 | The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌)) | ||
Theorem | restperf 21036 | Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) | ||
Theorem | perfopn 21037 | An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝐾 ∈ Perf) | ||
Theorem | resstopn 21038 | The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐻 = (𝐾 ↾s 𝐴) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) | ||
Theorem | resstps 21039 | A restricted topological space is a topological space. Note that this theorem would not be true if TopSp was defined directly in terms of the TopSet slot instead of the TopOpen derived function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ ((𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ TopSp) | ||
Theorem | ordtbaslem 21040* | Lemma for ordtbas 21044. In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴) | ||
Theorem | ordtval 21041* | Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⇒ ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))))) | ||
Theorem | ordtuni 21042* | Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑋 = ∪ ({𝑋} ∪ (𝐴 ∪ 𝐵))) | ||
Theorem | ordtbas2 21043* | Lemma for ordtbas 21044. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) & ⊢ 𝐶 = ran (𝑎 ∈ 𝑋, 𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶)) | ||
Theorem | ordtbas 21044* | In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) & ⊢ 𝐶 = ran (𝑎 ∈ 𝑋, 𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))) = (({𝑋} ∪ (𝐴 ∪ 𝐵)) ∪ 𝐶)) | ||
Theorem | ordttopon 21045 | Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) | ||
Theorem | ordtopn1 21046* | An upward ray (𝑃, +∞) is open. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅)) | ||
Theorem | ordtopn2 21047* | A downward ray (-∞, 𝑃) is open. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅)) | ||
Theorem | ordtopn3 21048* | An open interval (𝐴, 𝐵) is open. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (¬ 𝑥𝑅𝐴 ∧ ¬ 𝐵𝑅𝑥)} ∈ (ordTop‘𝑅)) | ||
Theorem | ordtcld1 21049* | A downward ray (-∞, 𝑃] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅))) | ||
Theorem | ordtcld2 21050* | An upward ray [𝑃, +∞) is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) | ||
Theorem | ordtcld3 21051* | A closed interval [𝐴, 𝐵] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ (𝐴𝑅𝑥 ∧ 𝑥𝑅𝐵)} ∈ (Clsd‘(ordTop‘𝑅))) | ||
Theorem | ordttop 21052 | The order topology is a topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ Top) | ||
Theorem | ordtcnv 21053 | The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑅 ∈ PosetRel → (ordTop‘◡𝑅) = (ordTop‘𝑅)) | ||
Theorem | ordtrest 21054 | The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) | ||
Theorem | ordtrest2lem 21055* | Lemma for ordtrest2 21056. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ (𝜑 → 𝑅 ∈ TosetRel ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝑋 ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦)} ⊆ 𝐴) ⇒ ⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) | ||
Theorem | ordtrest2 21056* | An interval-closed set 𝐴 in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in ℝ, but in other sets like ℚ there are interval-closed sets like (π, +∞) ∩ ℚ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 & ⊢ (𝜑 → 𝑅 ∈ TosetRel ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝑋 ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦)} ⊆ 𝐴) ⇒ ⊢ (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = ((ordTop‘𝑅) ↾t 𝐴)) | ||
Theorem | letopon 21057 | The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | ||
Theorem | letop 21058 | The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (ordTop‘ ≤ ) ∈ Top | ||
Theorem | letopuni 21059 | The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ℝ* = ∪ (ordTop‘ ≤ ) | ||
Theorem | xrstopn 21060 | The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (ordTop‘ ≤ ) = (TopOpen‘ℝ*𝑠) | ||
Theorem | xrstps 21061 | The extended real number structure is a topological space. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ*𝑠 ∈ TopSp | ||
Theorem | leordtvallem1 21062* | Lemma for leordtval 21065. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⇒ ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) | ||
Theorem | leordtvallem2 21063* | Lemma for leordtval 21065. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) & ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⇒ ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) | ||
Theorem | leordtval2 21064 | The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) & ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⇒ ⊢ (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴 ∪ 𝐵))) | ||
Theorem | leordtval 21065 | The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) & ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) & ⊢ 𝐶 = ran (,) ⇒ ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) | ||
Theorem | iccordt 21066 | A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) | ||
Theorem | iocpnfordt 21067 | An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝐴(,]+∞) ∈ (ordTop‘ ≤ ) | ||
Theorem | icomnfordt 21068 | An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (-∞[,)𝐴) ∈ (ordTop‘ ≤ ) | ||
Theorem | iooordt 21069 | An open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝐴(,)𝐵) ∈ (ordTop‘ ≤ ) | ||
Theorem | reordt 21070 | The real numbers are an open set in the topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ℝ ∈ (ordTop‘ ≤ ) | ||
Theorem | lecldbas 21071 | The set of closed intervals forms a closed subbasis for the topology on the extended reals. Since our definition of a basis is in terms of open sets, we express this by showing that the complements of closed intervals form an open subbasis for the topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ ran [,] ↦ (ℝ* ∖ 𝑥)) ⇒ ⊢ (ordTop‘ ≤ ) = (topGen‘(fi‘ran 𝐹)) | ||
Theorem | pnfnei 21072* | A neighborhood of +∞ contains an unbounded interval based at a real number. Together with xrtgioo 22656 (which describes neighborhoods of ℝ) and mnfnei 21073, this gives all "negative" topological information ensuring that it is not too fine (and of course iooordt 21069 and similar ensure that it has all the sets we want). (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) | ||
Theorem | mnfnei 21073* | A neighborhood of -∞ contains an unbounded interval based at a real number. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴) | ||
Theorem | ordtrestixx 21074* | The restriction of the less than order to an interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝐴 ⊆ ℝ* & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥[,]𝑦) ⊆ 𝐴) ⇒ ⊢ ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) | ||
Theorem | ordtresticc 21075 | The restriction of the less than order to a closed interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ ((ordTop‘ ≤ ) ↾t (𝐴[,]𝐵)) = (ordTop‘( ≤ ∩ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) | ||
Syntax | ccn 21076 | Extend class notation with the class of continuous functions between topologies. |
class Cn | ||
Syntax | ccnp 21077 | Extend class notation with the class of functions between topologies continuous at a given point. |
class CnP | ||
Syntax | clm 21078 | Extend class notation with a function on topological spaces whose value is the convergence relation for limit sequences in the space. |
class ⇝𝑡 | ||
Definition | df-cn 21079* | Define a function on two topologies whose value is the set of continuous mappings from the first topology to the second. Based on definition of continuous function in [Munkres] p. 102. See iscn 21087 for the predicate form. (Contributed by NM, 17-Oct-2006.) |
⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚 ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) | ||
Definition | df-cnp 21080* | Define a function on two topologies whose value is the set of continuous mappings at a specified point in the first topology. Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) |
⊢ CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚 ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) | ||
Definition | df-lm 21081* | Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although 𝑓 is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function (𝑥 ∈ ℝ ↦ (sin‘(π · 𝑥))) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.) |
⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | ||
Theorem | lmrel 21082 | The topological space convergence relation is a relation. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
⊢ Rel (⇝𝑡‘𝐽) | ||
Theorem | lmrcl 21083 | Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.) |
⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) | ||
Theorem | lmfval 21084* | The relation "sequence 𝑓 converges to point 𝑦 " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧ 𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | ||
Theorem | cnfval 21085* | The set of all continuous functions from topology 𝐽 to topology 𝐾. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | ||
Theorem | cnpfval 21086* | The function mapping the points in a topology 𝐽 to the set of all functions from 𝐽 to topology 𝐾 continuous at that point. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) | ||
Theorem | iscn 21087* | The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾." Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | ||
Theorem | cnpval 21088* | The set of all functions from topology 𝐽 to topology 𝐾 that are continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) | ||
Theorem | iscnp 21089* | The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃." Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) | ||
Theorem | iscn2 21090* | The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾." Definition of continuous function in [Munkres] p. 102. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | ||
Theorem | iscnp2 21091* | The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃." Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) | ||
Theorem | cntop1 21092 | Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | ||
Theorem | cntop2 21093 | Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | ||
Theorem | cnptop1 21094 | Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top) | ||
Theorem | cnptop2 21095 | Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top) | ||
Theorem | iscnp3 21096* | The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃." (Contributed by NM, 15-May-2007.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) | ||
Theorem | cnprcl 21097 | Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 ∈ 𝑋) | ||
Theorem | cnf 21098 | A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) | ||
Theorem | cnpf 21099 | A continuous function at point 𝑃 is a mapping. (Contributed by FL, 17-Nov-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋⟶𝑌) | ||
Theorem | cnpcl 21100 | The value of a continuous function from 𝐽 to 𝐾 at point 𝑃 belongs to the underlying set of topology 𝐾. (Contributed by FL, 27-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ 𝑌) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |