![]() |
Metamath
Proof Explorer Theorem List (p. 209 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | isbasis3g 20801* | Express the predicate "𝐵 is a basis for a topology." Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.) |
⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ (∀𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ ∪ 𝐵∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))))) | ||
Theorem | basis1 20802 | Property of a basis. (Contributed by NM, 16-Jul-2006.) |
⊢ ((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) | ||
Theorem | basis2 20803* | Property of a basis. (Contributed by NM, 17-Jul-2006.) |
⊢ (((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵) ∧ (𝐷 ∈ 𝐵 ∧ 𝐴 ∈ (𝐶 ∩ 𝐷))) → ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷))) | ||
Theorem | fiinbas 20804* | If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases) | ||
Theorem | basdif0 20805 | A basis is not affected by the addition or removal of the empty set. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ ((𝐵 ∖ {∅}) ∈ TopBases ↔ 𝐵 ∈ TopBases) | ||
Theorem | baspartn 20806* | A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝑃 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) → 𝑃 ∈ TopBases) | ||
Theorem | tgval 20807* | The topology generated by a basis. See also tgval2 20808 and tgval3 20815. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | ||
Theorem | tgval2 20808* | Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 20821) that (topGen‘𝐵) is indeed a topology (on ∪ 𝐵, see unitg 20819). See also tgval 20807 and tgval3 20815. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))}) | ||
Theorem | eltg 20809 | Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) | ||
Theorem | eltg2 20810* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | ||
Theorem | eltg2b 20811* | Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | ||
Theorem | eltg4i 20812 | An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) | ||
Theorem | eltg3i 20813 | The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) | ||
Theorem | eltg3 20814* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Mario Carneiro, 30-Aug-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) | ||
Theorem | tgval3 20815* | Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 20807 and tgval2 20808. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)}) | ||
Theorem | tg1 20816 | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ 𝐵) | ||
Theorem | tg2 20817* | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) | ||
Theorem | bastg 20818 | A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | ||
Theorem | unitg 20819 | The topology generated by a basis 𝐵 is a topology on ∪ 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) |
⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) | ||
Theorem | tgss 20820 | Subset relation for generated topologies. (Contributed by NM, 7-May-2007.) |
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) | ||
Theorem | tgcl 20821 | Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.) |
⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | ||
Theorem | tgclb 20822 | The property tgcl 20821 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) | ||
Theorem | tgtopon 20823 | A basis generates a topology on ∪ 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘∪ 𝐵)) | ||
Theorem | topbas 20824 | A topology is its own basis. (Contributed by NM, 17-Jul-2006.) |
⊢ (𝐽 ∈ Top → 𝐽 ∈ TopBases) | ||
Theorem | tgtop 20825 | A topology is its own basis. (Contributed by NM, 18-Jul-2006.) |
⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | ||
Theorem | eltop 20826 | Membership in a topology, expressed without quantifiers. (Contributed by NM, 19-Jul-2006.) |
⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ 𝐴 ⊆ ∪ (𝐽 ∩ 𝒫 𝐴))) | ||
Theorem | eltop2 20827* | Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | ||
Theorem | eltop3 20828* | Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∃𝑥(𝑥 ⊆ 𝐽 ∧ 𝐴 = ∪ 𝑥))) | ||
Theorem | fibas 20829 | A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
⊢ (fi‘𝐴) ∈ TopBases | ||
Theorem | tgdom 20830 | A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) | ||
Theorem | tgiun 20831* | The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ (topGen‘𝐵)) | ||
Theorem | tgidm 20832 | The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵)) | ||
Theorem | bastop 20833 | Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.) |
⊢ (𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵)) | ||
Theorem | tgtop11 20834 | The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.) |
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾) | ||
Theorem | 0top 20835 | The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.) |
⊢ (𝐽 ∈ Top → (∪ 𝐽 = ∅ ↔ 𝐽 = {∅})) | ||
Theorem | en1top 20836 | {∅} is the only topology with one element. (Contributed by FL, 18-Aug-2008.) |
⊢ (𝐽 ∈ Top → (𝐽 ≈ 1𝑜 ↔ 𝐽 = {∅})) | ||
Theorem | en2top 20837 | If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2𝑜 ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))) | ||
Theorem | tgss3 20838 | A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶))) | ||
Theorem | tgss2 20839* | A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 ∈ ∪ 𝐵∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | ||
Theorem | basgen 20840 | Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = 𝐽) | ||
Theorem | basgen2 20841* | Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (topGen‘𝐵) = 𝐽) | ||
Theorem | 2basgen 20842 | Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) | ||
Theorem | tgfiss 20843 | If a subbase is included into a topology, so is the generated topology. (Contributed by FL, 20-Apr-2012.) (Proof shortened by Mario Carneiro, 10-Jan-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ 𝐽) | ||
Theorem | tgdif0 20844 | A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) | ||
Theorem | bastop1 20845* | A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽," since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | ||
Theorem | bastop2 20846* | A version of bastop1 20845 that doesn't have 𝐵 ⊆ 𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.) |
⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) | ||
Theorem | distop 20847 | The discrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.) |
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | ||
Theorem | topnex 20848 | The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7010; an alternate proof uses indiscrete topologies (see indistop 20854) and the analogue of pwnex 7010 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7007). (Contributed by BJ, 2-May-2021.) |
⊢ Top ∉ V | ||
Theorem | distopon 20849 | The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) | ||
Theorem | sn0topon 20850 | The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ {∅} ∈ (TopOn‘∅) | ||
Theorem | sn0top 20851 | The singleton of the empty set is a topology. (Contributed by Stefan Allan, 3-Mar-2006.) (Proof shortened by Mario Carneiro, 13-Aug-2015.) |
⊢ {∅} ∈ Top | ||
Theorem | indislem 20852 | A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | ||
Theorem | indistopon 20853 | The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐴 ∈ 𝑉 → {∅, 𝐴} ∈ (TopOn‘𝐴)) | ||
Theorem | indistop 20854 | The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ {∅, 𝐴} ∈ Top | ||
Theorem | indisuni 20855 | The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} | ||
Theorem | fctop 20856* | The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (Contributed by FL, 15-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
Theorem | fctop2 20857* | The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (This version of fctop 20856 requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≺ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
Theorem | cctop 20858* | The countable complement topology on a set 𝐴. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
Theorem | ppttop 20859* | The particular point topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
Theorem | pptbas 20860* | The particular point topology is generated by a basis consisting of pairs {𝑥, 𝑃} for each 𝑥 ∈ 𝐴. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} = (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}))) | ||
Theorem | epttop 20861* | The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴)) | ||
Theorem | indistpsx 20862 | The indiscrete topology on a set 𝐴 expressed as a topological space, using explicit structure component references. Compare with indistps 20863 and indistps2 20864. The advantage of this version is that the actual function for the structure is evident, and df-ndx 15907 is not needed, nor any other special definition outside of basic set theory. The disadvantage is that if the indices of the component definitions df-base 15910 and df-tset 16007 are changed in the future, this theorem will also have to be changed. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use indistps 20863 instead. (New usage is discouraged.) (Contributed by FL, 19-Jul-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈1, 𝐴〉, 〈9, {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | indistps 20863 | The indiscrete topology on a set 𝐴 expressed as a topological space, using implicit structure indices. The advantage of this version over indistpsx 20862 is that it is independent of the indices of the component definitions df-base 15910 and df-tset 16007, and if they are changed in the future, this theorem will not be affected. The advantage over indistps2 20864 is that it is easy to eliminate the hypotheses with eqid 2651 and vtoclg 3297 to result in a closed theorem. Theorems indistpsALT 20865 and indistps2ALT 20866 show that the two forms can be derived from each other. (Contributed by FL, 19-Jul-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | indistps2 20864 | The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 20863. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 20865 and indistps2ALT 20866 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = {∅, 𝐴} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | indistpsALT 20865 | The indiscrete topology on a set 𝐴 expressed as a topological space. Here we show how to derive the structural version indistps 20863 from the direct component assignment version indistps2 20864. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | indistps2ALT 20866 | The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 20864 from the structural version indistps 20863. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = {∅, 𝐴} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | distps 20867 | The discrete topology on a set 𝐴 expressed as a topological space. (Contributed by FL, 20-Aug-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝒫 𝐴〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Syntax | ccld 20868 | Extend class notation with the set of closed sets of a topology. |
class Clsd | ||
Syntax | cnt 20869 | Extend class notation with interior of a subset of a topology base set. |
class int | ||
Syntax | ccl 20870 | Extend class notation with closure of a subset of a topology base set. |
class cls | ||
Definition | df-cld 20871* | Define a function on topologies whose value is the set of closed sets of the topology. (Contributed by NM, 2-Oct-2006.) |
⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) | ||
Definition | df-ntr 20872* | Define a function on topologies whose value is the interior function on the subsets of the base set. See ntrval 20888. (Contributed by NM, 10-Sep-2006.) |
⊢ int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ (𝑗 ∩ 𝒫 𝑥))) | ||
Definition | df-cls 20873* | Define a function on topologies whose value is the closure function on the subsets of the base set. See clsval 20889. (Contributed by NM, 3-Oct-2006.) |
⊢ cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦})) | ||
Theorem | fncld 20874 | The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ Clsd Fn Top | ||
Theorem | cldval 20875* | The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) | ||
Theorem | ntrfval 20876* | The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))) | ||
Theorem | clsfval 20877* | The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦})) | ||
Theorem | cldrcl 20878 | Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | ||
Theorem | iscld 20879 | The predicate "𝑆 is a closed set." (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) | ||
Theorem | iscld2 20880 | A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝑆) ∈ 𝐽)) | ||
Theorem | cldss 20881 | A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) | ||
Theorem | cldss2 20882 | The set of closed sets is contained in the powerset of the base. (Contributed by Mario Carneiro, 6-Jan-2014.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 | ||
Theorem | cldopn 20883 | The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) | ||
Theorem | isopn2 20884 | A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) | ||
Theorem | opncld 20885 | The complement of an open set is closed. (Contributed by NM, 6-Oct-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽)) | ||
Theorem | difopn 20886 | The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∖ 𝐵) ∈ 𝐽) | ||
Theorem | topcld 20887 | The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) | ||
Theorem | ntrval 20888 | The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) | ||
Theorem | clsval 20889* | The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) | ||
Theorem | 0cld 20890 | The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.) |
⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | ||
Theorem | iincld 20891* | The indexed intersection of a collection 𝐵(𝑥) of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | ||
Theorem | intcld 20892 | The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006.) |
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝐴 ∈ (Clsd‘𝐽)) | ||
Theorem | uncld 20893 | The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) |
⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) | ||
Theorem | cldcls 20894 | A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.) |
⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) | ||
Theorem | incld 20895 | The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ 𝐵) ∈ (Clsd‘𝐽)) | ||
Theorem | riincld 20896* | An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) | ||
Theorem | iuncld 20897* | A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | ||
Theorem | unicld 20898 | A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∪ 𝐴 ∈ (Clsd‘𝐽)) | ||
Theorem | clscld 20899 | The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) | ||
Theorem | clsf 20900 | The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |