Home Metamath Proof ExplorerTheorem List (p. 207 of 429) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27903) Hilbert Space Explorer (27904-29428) Users' Mathboxes (29429-42879)

Theorem List for Metamath Proof Explorer - 20601-20700   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremm2pmfzgsumcl 20601* Closure of the sum of scaled transformed matrices. (Contributed by AV, 4-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑋 = (var1𝑅)    &    = (.g‘(mulGrp‘𝑃))    &    · = ( ·𝑠𝑌)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌))

Theoremcpm2mfval 20602* Value of the inverse matrix transformation. (Contributed by AV, 14-Dec-2019.)
𝐼 = (𝑁 cPolyMatToMat 𝑅)    &   𝑆 = (𝑁 ConstPolyMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))

Theoremcpm2mval 20603* The result of an inverse matrix transformation. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
𝐼 = (𝑁 cPolyMatToMat 𝑅)    &   𝑆 = (𝑁 ConstPolyMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → (𝐼𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0)))

Theoremcpm2mvalel 20604 A (matrix) element of the result of an inverse matrix transformation. (Contributed by AV, 14-Dec-2019.)
𝐼 = (𝑁 cPolyMatToMat 𝑅)    &   𝑆 = (𝑁 ConstPolyMat 𝑅)       (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) ∧ (𝑋𝑁𝑌𝑁)) → (𝑋(𝐼𝑀)𝑌) = ((coe1‘(𝑋𝑀𝑌))‘0))

Theoremcpm2mf 20605 The inverse matrix transformation is a function from the constant polynomial matrices to the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐾 = (Base‘𝐴)    &   𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝐼 = (𝑁 cPolyMatToMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼:𝑆𝐾)

Theoremm2cpminvid 20606 The inverse transformation applied to the transformation of a matrix over a ring R results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 13-Dec-2019.)
𝐼 = (𝑁 cPolyMatToMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐾 = (Base‘𝐴)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝐼‘(𝑇𝑀)) = 𝑀)

Theoremm2cpminvid2lem 20607* Lemma for m2cpminvid2 20608. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))

Theoremm2cpminvid2 20608 The transformation applied to the inverse transformation of a constant polynomial matrix over the ring 𝑅 results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝐼 = (𝑁 cPolyMatToMat 𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑇‘(𝐼𝑀)) = 𝑀)

Theoremm2cpmfo 20609 The matrix transformation is a function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐾 = (Base‘𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾onto𝑆)

Theoremm2cpmf1o 20610 The matrix transformation is a 1-1 function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐾 = (Base‘𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾1-1-onto𝑆)

Theoremm2cpmrngiso 20611 The transformation of matrices into constant polynomial matrices is a ring isomorphism. (Contributed by AV, 19-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐾 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝑈 = (𝐶s 𝑆)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingIso 𝑈))

Theoremmatcpmric 20612 The ring of matrices over a commutative ring is isomorphic to the ring of scalar matrices over the same ring. (Contributed by AV, 30-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑈 = (𝐶s 𝑆)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴𝑟 𝑈)

Theoremm2cpminv 20613 The inverse matrix transformation is a 1-1 function from the constant polynomial matrices onto the matrices over the base ring of the polynomials. (Contributed by AV, 27-Nov-2019.) (Revised by AV, 15-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐾 = (Base‘𝐴)    &   𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝐼 = (𝑁 cPolyMatToMat 𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼:𝑆1-1-onto𝐾𝐼 = 𝑇))

Theoremm2cpminv0 20614 The inverse matrix transformation applied to the zero polynomial matrix results in the zero of the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐼 = (𝑁 cPolyMatToMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &    0 = (0g𝐴)    &   𝑍 = (0g𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼𝑍) = 0 )

11.4.3  Collecting coefficients of polynomial matrices

In this section, the decomposition of polynomial matrices into (polynomial) multiples of constant (polynomial) matrices is prepared by collecting the coefficients of a polynomial matrix which belong to the same power of the polynomial variable. Such a collection is given by the functiondecompPMat ( see df-decpmat 20616), which maps a polynomial matrix 𝑀 to a constant matrix consisting of the coefficients of the scaled monomials ((𝑐𝑘) (𝑘 𝑋)), i.e. the coefficients belonging to the k-th power of the polynomial variable 𝑋, of each entry in the polynomial matrix 𝑀. The resulting decomposition is provided by theorem pmatcollpw 20634.

Syntaxcdecpmat 20615 Extend class notation to include the decomposition of polynomial matrices.
class decompPMat

Definitiondf-decpmat 20616* Define the decomposition of polynomial matrices. This function collects the coefficients of a polynomial matrix 𝑚 belong to the 𝑘 th power of the polynomial variable for each entry of 𝑚. (Contributed by AV, 2-Dec-2019.)
decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))

Theoremdecpmatval0 20617* The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019.)
((𝑀𝑉𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))

Theoremdecpmatval 20618* The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, general version for arbitrary matrices. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)       ((𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))

Theoremdecpmate 20619 An entry of the matrix consisting of the coefficients in the entries of a polynomial matrix is the corresponding coefficient in the polynomial entry of the given matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)       (((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑀 decompPMat 𝐾)𝐽) = ((coe1‘(𝐼𝑀𝐽))‘𝐾))

Theoremdecpmatcl 20620 Closure of the decomposition of a polynomial matrix: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is a matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐷 = (Base‘𝐴)       ((𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) ∈ 𝐷)

Theoremdecpmataa0 20621* The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is 0 for almost all powers. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 3-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &   𝐴 = (𝑁 Mat 𝑅)    &    0 = (0g𝐴)       ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ))

Theoremdecpmatfsupp 20622* The mapping to the matrices consisting of the coefficients in the polynomial entries of a given matrix for the same power is finitely supported. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 3-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &   𝐴 = (𝑁 Mat 𝑅)    &    0 = (0g𝐴)       ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp 0 )

Theoremdecpmatid 20623 The matrix consisting of the coefficients in the polynomial entries of the identity matrix is an identity or a zero matrix. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐼 = (1r𝐶)    &   𝐴 = (𝑁 Mat 𝑅)    &    0 = (0g𝐴)    &    1 = (1r𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0) → (𝐼 decompPMat 𝐾) = if(𝐾 = 0, 1 , 0 ))

Theoremdecpmatmullem 20624* Lemma for decpmatmul 20625. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 3-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))

Theoremdecpmatmul 20625* The matrix consisting of the coefficients in the polynomial entries of the product of two polynomial matrices is a sum of products of the matrices consisting of the coefficients in the polynomial entries of the polynomial matrices for the same power. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 3-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &   𝐴 = (𝑁 Mat 𝑅)       ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))))

Theoremdecpmatmulsumfsupp 20626* Lemma 0 for pm2mpmhm 20673. (Contributed by AV, 21-Oct-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &   𝐴 = (𝑁 Mat 𝑅)    &    · = (.r𝐴)    &    0 = (0g𝐴)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑙 ∈ ℕ0 ↦ (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘)))))) finSupp 0 )

Theorempmatcollpw1lem1 20627* Lemma 1 for pmatcollpw1 20629. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 3-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    × = ( ·𝑠𝑃)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (𝑛 ∈ ℕ0 ↦ ((𝐼(𝑀 decompPMat 𝑛)𝐽) × (𝑛 𝑋))) finSupp (0g𝑃))

Theorempmatcollpw1lem2 20628* Lemma 2 for pmatcollpw1 20629: An entry of a polynomial matrix is the sum of the entries of the matrix consisting of the coefficients in the entries of the polynomial matrix multiplied with the corresponding power of the variable. (Contributed by AV, 25-Sep-2019.) (Revised by AV, 3-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    × = ( ·𝑠𝑃)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 𝑋)))))

Theorempmatcollpw1 20629* Write a polynomial matrix as a matrix of sums of scaled monomials. (Contributed by AV, 29-Sep-2019.) (Revised by AV, 3-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    × = ( ·𝑠𝑃)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))))

Theorempmatcollpw2lem 20630* Lemma for pmatcollpw2 20631. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    × = ( ·𝑠𝑃)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶))

Theorempmatcollpw2 20631* Write a polynomial matrix as a sum of matrices whose entries are products of variable powers and constant polynomials collecting like powers. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    × = ( ·𝑠𝑃)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))))

Theoremmonmatcollpw 20632 The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix having scaled monomials with the same power as entries is the matrix of the coefficients of the monomials or a zero matrix. Generalization of decpmatid 20623 (but requires 𝑅 to be commutative!). (Contributed by AV, 11-Nov-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐾 = (Base‘𝐴)    &    0 = (0g𝐴)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &    · = ( ·𝑠𝐶)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))

Theorempmatcollpwlem 20633 Lemma for pmatcollpw 20634. (Contributed by AV, 26-Oct-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))

Theorempmatcollpw 20634* Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 26-Oct-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))

Theorempmatcollpwfi 20635* Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0 𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))

Theorempmatcollpw3lem 20636* Lemma for pmatcollpw3 20637 and pmatcollpw3fi 20638: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 8-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐷 = (Base‘𝐴)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷𝑚 𝐼)𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))

Theorempmatcollpw3 20637* Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 27-Oct-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐷 = (Base‘𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑓 ∈ (𝐷𝑚0)𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))

Theorempmatcollpw3fi 20638* Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐷 = (Base‘𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐷𝑚 (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))

Theorempmatcollpw3fi1lem1 20639* Lemma 1 for pmatcollpw3fi1 20641. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐷 = (Base‘𝐴)    &    0 = (0g𝐴)    &   𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 ))       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))

Theorempmatcollpw3fi1lem2 20640* Lemma 2 for pmatcollpw3fi1 20641. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐷 = (Base‘𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑓 ∈ (𝐷𝑚 {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷𝑚 (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))

Theorempmatcollpw3fi1 20641* Write a polynomial matrix (over a commutative ring) as a finite sum of (at least two) products of variable powers and constant matrices with scalar entries. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐷 = (Base‘𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷𝑚 (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))

Theorempmatcollpwscmatlem1 20642 Lemma 1 for pmatcollpwscmat 20644. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐷 = (Base‘𝐴)    &   𝑈 = (algSc‘𝑃)    &   𝐾 = (Base‘𝑅)    &   𝐸 = (Base‘𝑃)    &   𝑆 = (algSc‘𝑃)    &    1 = (1r𝐶)    &   𝑀 = (𝑄 1 )       ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) ∧ (𝑎𝑁𝑏𝑁)) → (((coe1‘(𝑎𝑀𝑏))‘𝐿)( ·𝑠𝑃)(0(.g‘(mulGrp‘𝑃))(var1𝑅))) = if(𝑎 = 𝑏, (𝑈‘((coe1𝑄)‘𝐿)), (0g𝑃)))

Theorempmatcollpwscmatlem2 20643 Lemma 2 for pmatcollpwscmat 20644. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐷 = (Base‘𝐴)    &   𝑈 = (algSc‘𝑃)    &   𝐾 = (Base‘𝑅)    &   𝐸 = (Base‘𝑃)    &   𝑆 = (algSc‘𝑃)    &    1 = (1r𝐶)    &   𝑀 = (𝑄 1 )       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐿 ∈ ℕ0𝑄𝐸)) → (𝑇‘(𝑀 decompPMat 𝐿)) = ((𝑈‘((coe1𝑄)‘𝐿)) 1 ))

Theorempmatcollpwscmat 20644* Write a scalar matrix over polynomials (over a commutative ring) as a sum of the product of variable powers and constant scalar matrices with scalar entries. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐷 = (Base‘𝐴)    &   𝑈 = (algSc‘𝑃)    &   𝐾 = (Base‘𝑅)    &   𝐸 = (Base‘𝑃)    &   𝑆 = (algSc‘𝑃)    &    1 = (1r𝐶)    &   𝑀 = (𝑄 1 )       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑋) ((𝑈‘((coe1𝑄)‘𝑛)) 1 )))))

11.4.4  Ring isomorphism between polynomial matrices and polynomials over matrices

The main result of this section is theorem pmmpric 20676, which shows that the ring of polynomial matrices and the ring of polynomials having matrices as coefficients (called "polynomials over matrices" in the following) are isomorphic:
(Poly1‘(𝑁 Mat 𝑅)) ≃ (𝑁 Mat (Poly1𝑅))

Or in a more common notation:
(𝑁 Mat (Poly1𝑅)) corresponds to M(n, R[t]), the ring of n x n polynomial matrices over the ring R.
(Poly1‘(𝑁 Mat 𝑅)) corresponds to M(n, R)[t], the polynomial ring over the ring of n x n matrices with entries in ring R.

𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋)))))

with 𝐵 = (Base‘(𝑁 Mat (Poly1𝑅))) and (𝑚 decompPMat 𝑘) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1 ( i m j ) ) 𝑘))) is an isomorphism between these rings:

𝑇:𝐵1-1-onto𝐿 with 𝐿 = (Base‘(Poly1‘(𝑁 Mat 𝑅))) (see pm2mpf1o 20668 and pm2mprngiso 20675), and

𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1 p ) 𝑘)𝑗) · (𝑘𝐸𝑌))))))

is the corresponding inverse function:

(𝑇‘(𝐼𝑂)) = 𝑂) (see mp2pm2mp 20664).

In this section, the following conventions are mostly used:

• 𝑅 is a (unital) ring (see df-ring 18595)
• 𝑃 = (Poly1𝑅) is the polynomial algebra over (the ring) 𝑅 (see df-ply1 19600)
• 𝐾 = (Base‘𝑃) is its base set (see df-base 15910)
• 𝑌 = (var1𝑅) is its variable (see df-vr1 19599)
• · = ( ·𝑠𝑃) is its scalar multiplication (see df-vsca 16005 or lmodvscl 18928)
• 𝐸 = (.g‘(mulGrp‘𝑃)) is its exponentiation (see df-mulg 17588)
• 𝐴 = (𝑁 Mat 𝑅) is the algebra of N x N matrices over (the ring) 𝑅 (see df-mat 20262)
• 𝐶 = (𝑁 Mat 𝑃) is the algebra of N x N matrices over (the polynomial ring) 𝑃.
• 𝐵 = (Base‘𝐶) is its base set
• 𝑀𝐵 is a concrete polynomial matrix
• 𝑄 = (Poly1𝐴) is the polynomial algebra over (the matrix ring) 𝐴.
• 𝐿 = (Base‘𝑄) is its base set
• 𝑂𝐿 is a concrete polynomial with matrix coefficients
• 𝑋 = (var1𝐴) is its variable
• = ( ·𝑠𝑄) is its scalar multiplication
• = (.g‘(mulGrp‘𝑄)) is its exponentiation

Syntaxcpm2mp 20645 Extend class notation with the transformation of a polynomial matrix into a polynomial over matrices.
class pMatToMatPoly

Definitiondf-pm2mp 20646* Transformation of a polynomial matrix (over a ring) into a polynomial over matrices (over the same ring). (Contributed by AV, 5-Dec-2019.)
pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ↦ (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎)))))))

Theorempm2mpf1lem 20647* Lemma for pm2mpf1 20652. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝐾 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑈 decompPMat 𝑘) (𝑘 𝑋)))))‘𝐾) = (𝑈 decompPMat 𝐾))

Theorempm2mpval 20648* Value of the transformation of a polynomial matrix into a polynomial over matrices. (Contributed by AV, 5-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘) (𝑘 𝑋))))))

Theorempm2mpfval 20649* A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019.) (Revised by AV, 5-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋)))))

Theorempm2mpcl 20650 The transformation of polynomial matrices into polynomials over matrices maps polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 5-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)    &   𝐿 = (Base‘𝑄)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ 𝐿)

Theorempm2mpf 20651 The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 5-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)    &   𝐿 = (Base‘𝑄)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐿)

Theorempm2mpf1 20652 The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 6-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)    &   𝐿 = (Base‘𝑄)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐿)

Theorempm2mpcoe1 20653 A coefficient of the polynomial over matrices which is the result of the transformation of a polynomial matrix is the matrix consisting of the coefficients in the polynomial entries of the polynomial matrix. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 5-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐵𝐾 ∈ ℕ0)) → ((coe1‘(𝑇𝑀))‘𝐾) = (𝑀 decompPMat 𝐾))

Theoremidpm2idmp 20654 The transformation of the identity polynomial matrix into polynomials over matrices results in the identity of the polynomials over matrices. (Contributed by AV, 18-Oct-2019.) (Revised by AV, 5-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐶)) = (1r𝑄))

Theoremmptcoe1matfsupp 20655* The mapping extracting the entries of the coefficient matrices of a polynomial over matrices at a fixed position is finitely supported. (Contributed by AV, 6-Oct-2019.) (Proof shortened by AV, 23-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1𝑂)‘𝑘)𝐽)) finSupp (0g𝑅))

Theoremmply1topmatcllem 20656* Lemma for mply1topmatcl 20658. (Contributed by AV, 6-Oct-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &   𝑃 = (Poly1𝑅)    &    · = ( ·𝑠𝑃)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑌 = (var1𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝐼((coe1𝑂)‘𝑘)𝐽) · (𝑘𝐸𝑌))) finSupp (0g𝑃))

Theoremmply1topmatval 20657* A polynomial over matrices transformed into a polynomial matrix. 𝐼 is the inverse function of the transformation 𝑇 of polynomial matrices into polynomials over matrices: (𝑇‘(𝐼𝑂)) = 𝑂) (see mp2pm2mp 20664). (Contributed by AV, 6-Oct-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &   𝑃 = (Poly1𝑅)    &    · = ( ·𝑠𝑃)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑌 = (var1𝑅)    &   𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))       ((𝑁𝑉𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))

Theoremmply1topmatcl 20658* A polynomial over matrices transformed into a polynomial matrix is a polynomial matrix. (Contributed by AV, 6-Oct-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &   𝑃 = (Poly1𝑅)    &    · = ( ·𝑠𝑃)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑌 = (var1𝑅)    &   𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) ∈ 𝐵)

Theoremmp2pm2mplem1 20659* Lemma 1 for mp2pm2mp 20664. (Contributed by AV, 9-Oct-2019.) (Revised by AV, 5-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &    · = ( ·𝑠𝑃)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑌 = (var1𝑅)    &   𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))

Theoremmp2pm2mplem2 20660* Lemma 2 for mp2pm2mp 20664. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &    · = ( ·𝑠𝑃)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑌 = (var1𝑅)    &   𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ 𝐵)

Theoremmp2pm2mplem3 20661* Lemma 3 for mp2pm2mp 20664. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &    · = ( ·𝑠𝑃)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑌 = (var1𝑅)    &   𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))    &   𝑃 = (Poly1𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)))

Theoremmp2pm2mplem4 20662* Lemma 4 for mp2pm2mp 20664. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &    · = ( ·𝑠𝑃)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑌 = (var1𝑅)    &   𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))    &   𝑃 = (Poly1𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((coe1𝑂)‘𝐾))

Theoremmp2pm2mplem5 20663* Lemma 5 for mp2pm2mp 20664. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &    · = ( ·𝑠𝑃)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑌 = (var1𝑅)    &   𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))    &   𝑃 = (Poly1𝑅)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))

Theoremmp2pm2mp 20664* A polynomial over matrices transformed into a polynomial matrix transformed back into the polynomial over matrices. (Contributed by AV, 12-Oct-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &    · = ( ·𝑠𝑃)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑌 = (var1𝑅)    &   𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))    &   𝑃 = (Poly1𝑅)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑇‘(𝐼𝑂)) = 𝑂)

Theorempm2mpghmlem2 20665* Lemma 2 for pm2mpghm 20669. (Contributed by AV, 15-Oct-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))

Theorempm2mpghmlem1 20666 Lemma 1 for pm2mpghm . (Contributed by AV, 15-Oct-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑀 decompPMat 𝐾) (𝐾 𝑋)) ∈ 𝐿)

Theorempm2mpfo 20667 The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 6-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵onto𝐿)

Theorempm2mpf1o 20668 The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 14-Oct-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1-onto𝐿)

Theorempm2mpghm 20669 The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019.) (Revised by AV, 6-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpHom 𝑄))

Theorempm2mpgrpiso 20670 The transformation of polynomial matrices into polynomials over matrices is an additive group isomorphism. (Contributed by AV, 17-Oct-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 GrpIso 𝑄))

Theorempm2mpmhmlem1 20671* Lemma 1 for pm2mpmhm 20673. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 6-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝐿 = (Base‘𝑄)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑙 ∈ ℕ0 ↦ ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑙𝑘))))) (𝑙 𝑋))) finSupp (0g𝑄))

Theorempm2mpmhmlem2 20672* Lemma 2 for pm2mpmhm 20673. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)    &   𝐵 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))

Theorempm2mpmhm 20673 The transformation of polynomial matrices into polynomials over matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ ((mulGrp‘𝐶) MndHom (mulGrp‘𝑄)))

Theorempm2mprhm 20674 The transformation of polynomial matrices into polynomials over matrices is a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 RingHom 𝑄))

Theorempm2mprngiso 20675 The transformation of polynomial matrices into polynomials over matrices is a ring isomorphism. (Contributed by AV, 22-Oct-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)    &   𝑇 = (𝑁 pMatToMatPoly 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐶 RingIso 𝑄))

Theorempmmpric 20676 The ring of polynomial matrices over a ring is isomorphic to the ring of polynomials over matrices of the same dimension over the same ring. (Contributed by AV, 30-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑄 = (Poly1𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶𝑟 𝑄)

Theoremmonmat2matmon 20677 The transformation of a polynomial matrix having scaled monomials with the same power as entries into a scaled monomial as a polynomial over matrices. (Contributed by AV, 11-Nov-2019.) (Revised by AV, 7-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐾 = (Base‘𝐴)    &   𝑄 = (Poly1𝐴)    &   𝐼 = (𝑁 pMatToMatPoly 𝑅)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑌 = (var1𝑅)    &    · = ( ·𝑠𝐶)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑀 (𝐿 𝑋)))

Theorempm2mp 20678* The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 7-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝑄)    &    = (.g‘(mulGrp‘𝑄))    &   𝑋 = (var1𝐴)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐾 = (Base‘𝐴)    &   𝑄 = (Poly1𝐴)    &   𝐼 = (𝑁 pMatToMatPoly 𝑅)    &   𝐸 = (.g‘(mulGrp‘𝑃))    &   𝑌 = (var1𝑅)    &    · = ( ·𝑠𝐶)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))

11.5  The characteristic polynomial

According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial): "In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix as coefficients.". Based on the definition of the characteristic polynomial of a square matrix (df-chpmat 20680) the eigenvalues and corresponding eigenvectors can be defined.

11.5.1  Definition and basic properties

The characteristic polynomial of a matrix 𝐴 is the determinat of the characteristic matrix of 𝐴: (𝑡𝐼𝐴).

Syntaxcchpmat 20679 Extend class notation with the characteristic polynomial.
class CharPlyMat

Definitiondf-chpmat 20680* Define the characteristic polynomial of a square matrix. According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial): "The characteristic polynomial of [an n x n matrix] A, denoted by pA(t), is the polynomial defined by pA ( t ) = det ( t I - A ) where I denotes the n-by-n identity matrix.". In addition, however, the underlying ring must be commutative, see definition in [Lang], p. 561: " Let k be a commutative ring ... Let M be any n x n matrix in k ... We define the characteristic polynomial PM(t) to be the determinant det ( t In - M ) where In is the unit n x n matrix." To be more precise, the matrices A and I on the right hand side are matrices with coefficients of a polynomial ring. Therefore, the original matrix A over a given commutative ring must be transformed into corresponding matrices over the polynomial ring over the given ring. (Contributed by AV, 2-Aug-2019.)
CharPlyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1𝑟))‘(((var1𝑟)( ·𝑠 ‘(𝑛 Mat (Poly1𝑟)))(1r‘(𝑛 Mat (Poly1𝑟))))(-g‘(𝑛 Mat (Poly1𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚)))))

Theoremchmatcl 20681 Closure of the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) (Proof shortened by AV, 29-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &    = (-g𝑌)    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝐻 = ((𝑋 · 1 ) (𝑇𝑀))       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝐻 ∈ (Base‘𝑌))

Theoremchmatval 20682 The entries of the characteristic matrix of a matrix. (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 10-Dec-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝑋 = (var1𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &    = (-g𝑌)    &    · = ( ·𝑠𝑌)    &    1 = (1r𝑌)    &   𝐻 = ((𝑋 · 1 ) (𝑇𝑀))    &    = (-g𝑃)    &    0 = (0g𝑃)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽))))

Theoremchpmatfval 20683* Value of the characteristic polynomial function. (Contributed by AV, 2-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝐷 = (𝑁 maDet 𝑃)    &    = (-g𝑌)    &   𝑋 = (var1𝑅)    &    · = ( ·𝑠𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &    1 = (1r𝑌)       ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐶 = (𝑚𝐵 ↦ (𝐷‘((𝑋 · 1 ) (𝑇𝑚)))))

Theoremchpmatval 20684 The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &   𝐷 = (𝑁 maDet 𝑃)    &    = (-g𝑌)    &   𝑋 = (var1𝑅)    &    · = ( ·𝑠𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &    1 = (1r𝑌)       ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝐶𝑀) = (𝐷‘((𝑋 · 1 ) (𝑇𝑀))))

Theoremchpmatply1 20685 The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in [Lang], p. 561: "[the characteristic polynomial] is an element of k[t]". (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 29-Nov-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐸 = (Base‘𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ 𝐸)

Theoremchpmatval2 20686* The characteristic polynomial of a (square) matrix (expressed with the Leibnitz formula for the determinant). (Contributed by AV, 2-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑌 = (𝑁 Mat 𝑃)    &    = (-g𝑌)    &   𝑋 = (var1𝑅)    &    · = ( ·𝑠𝑌)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &    1 = (1r𝑌)    &   𝐺 = (SymGrp‘𝑁)    &   𝐻 = (Base‘𝐺)    &   𝑍 = (ℤRHom‘𝑃)    &   𝑆 = (pmSgn‘𝑁)    &   𝑈 = (mulGrp‘𝑃)    &    × = (.r𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐶𝑀) = (𝑃 Σg (𝑝𝐻 ↦ (((𝑍𝑆)‘𝑝) × (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)((𝑋 · 1 ) (𝑇𝑀))𝑥)))))))

Theoremchpmat0d 20687 The characteristic polynomial of the empty matrix. (Contributed by AV, 6-Aug-2019.)
𝐶 = (∅ CharPlyMat 𝑅)       (𝑅 ∈ Ring → (𝐶‘∅) = (1r‘(Poly1𝑅)))

Theoremchpmat1dlem 20688 Lemma for chpmat1d 20689. (Contributed by AV, 7-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑋 = (var1𝑅)    &    = (-g𝑃)    &   𝑆 = (algSc‘𝑃)    &   𝐺 = (𝑁 Mat 𝑃)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       ((𝑅 ∈ Ring ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐼((𝑋( ·𝑠𝐺)(1r𝐺))(-g𝐺)(𝑇𝑀))𝐼) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))

Theoremchpmat1d 20689 The characteristic polynomial of a matrix with dimension 1. (Contributed by AV, 7-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑋 = (var1𝑅)    &    = (-g𝑃)    &   𝑆 = (algSc‘𝑃)       ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼𝑉) ∧ 𝑀𝐵) → (𝐶𝑀) = (𝑋 (𝑆‘(𝐼𝑀𝐼))))

Theoremchpdmatlem0 20690 Lemma 0 for chpdmat 20694. (Contributed by AV, 18-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑆 = (algSc‘𝑃)    &   𝐵 = (Base‘𝐴)    &   𝑋 = (var1𝑅)    &    0 = (0g𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (-g𝑃)    &   𝑄 = (𝑁 Mat 𝑃)    &    1 = (1r𝑄)    &    · = ( ·𝑠𝑄)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄))

Theoremchpdmatlem1 20691 Lemma 1 for chpdmat 20694. (Contributed by AV, 18-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑆 = (algSc‘𝑃)    &   𝐵 = (Base‘𝐴)    &   𝑋 = (var1𝑅)    &    0 = (0g𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (-g𝑃)    &   𝑄 = (𝑁 Mat 𝑃)    &    1 = (1r𝑄)    &    · = ( ·𝑠𝑄)    &   𝑍 = (-g𝑄)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑋 · 1 )𝑍(𝑇𝑀)) ∈ (Base‘𝑄))

Theoremchpdmatlem2 20692 Lemma 2 for chpdmat 20694. (Contributed by AV, 18-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑆 = (algSc‘𝑃)    &   𝐵 = (Base‘𝐴)    &   𝑋 = (var1𝑅)    &    0 = (0g𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (-g𝑃)    &   𝑄 = (𝑁 Mat 𝑃)    &    1 = (1r𝑄)    &    · = ( ·𝑠𝑄)    &   𝑍 = (-g𝑄)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋 · 1 )𝑍(𝑇𝑀))𝑗) = (0g𝑃))

Theoremchpdmatlem3 20693 Lemma 3 for chpdmat 20694. (Contributed by AV, 18-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑆 = (algSc‘𝑃)    &   𝐵 = (Base‘𝐴)    &   𝑋 = (var1𝑅)    &    0 = (0g𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (-g𝑃)    &   𝑄 = (𝑁 Mat 𝑃)    &    1 = (1r𝑄)    &    · = ( ·𝑠𝑄)    &   𝑍 = (-g𝑄)    &   𝑇 = (𝑁 matToPolyMat 𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐾𝑁) → (𝐾((𝑋 · 1 )𝑍(𝑇𝑀))𝐾) = (𝑋 (𝑆‘(𝐾𝑀𝐾))))

Theoremchpdmat 20694* The characteristic polynomial of a diagonal matrix. (Contributed by AV, 18-Aug-2019.) (Proof shortened by AV, 21-Nov-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑆 = (algSc‘𝑃)    &   𝐵 = (Base‘𝐴)    &   𝑋 = (var1𝑅)    &    0 = (0g𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (-g𝑃)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))

Theoremchpscmat 20695* The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑋 = (var1𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (.g𝐺)    &   𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}    &   𝑆 = (algSc‘𝑃)    &    = (-g𝑃)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = ((#‘𝑁) (𝑋 (𝑆𝐸))))

Theoremchpscmat0 20696* The characteristic polynomial of a (nonempty!) scalar matrix, expressed with its diagonal element. (Contributed by AV, 21-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑋 = (var1𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (.g𝐺)    &   𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}    &   𝑆 = (algSc‘𝑃)    &    = (-g𝑃)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐼𝑀𝐼))) → (𝐶𝑀) = ((#‘𝑁) (𝑋 (𝑆‘(𝐼𝑀𝐼)))))

Theoremchpscmatgsumbin 20697* The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of binomials. (Contributed by AV, 2-Sep-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑋 = (var1𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (.g𝐺)    &   𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}    &   𝑆 = (algSc‘𝑃)    &    = (-g𝑃)    &   𝐹 = (.g𝑃)    &   𝐻 = (mulGrp‘𝑅)    &   𝐸 = (.g𝐻)    &   𝐼 = (invg𝑅)    &    · = ( ·𝑠𝑃)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶𝑀) = (𝑃 Σg (𝑙 ∈ (0...(#‘𝑁)) ↦ (((#‘𝑁)C𝑙)𝐹((((#‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 𝑋))))))

Theoremchpscmatgsummon 20698* The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of scaled monomials. (Contributed by AV, 2-Sep-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑋 = (var1𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (.g𝐺)    &   𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}    &   𝑆 = (algSc‘𝑃)    &    = (-g𝑃)    &   𝐹 = (.g𝑃)    &   𝐻 = (mulGrp‘𝑅)    &   𝐸 = (.g𝐻)    &   𝐼 = (invg𝑅)    &    · = ( ·𝑠𝑃)    &   𝑍 = (.g𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐽𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶𝑀) = (𝑃 Σg (𝑙 ∈ (0...(#‘𝑁)) ↦ ((((#‘𝑁)C𝑙)𝑍(((#‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 𝑋)))))

Theoremchp0mat 20699 The characteristic polynomial of the zero matrix. (Contributed by AV, 18-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑋 = (var1𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (.g𝐺)    &    0 = (0g𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶0 ) = ((#‘𝑁) 𝑋))

Theoremchpidmat 20700 The characteristic polynomial of the identity matrix. (Contributed by AV, 19-Aug-2019.)
𝐶 = (𝑁 CharPlyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝑋 = (var1𝑅)    &   𝐺 = (mulGrp‘𝑃)    &    = (.g𝐺)    &   𝐼 = (1r𝐴)    &   𝑆 = (algSc‘𝑃)    &    1 = (1r𝑅)    &    = (-g𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶𝐼) = ((#‘𝑁) (𝑋 (𝑆1 ))))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
 Copyright terms: Public domain < Previous  Next >