![]() |
Metamath
Proof Explorer Theorem List (p. 203 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | islindf2 20201* | Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))) | ||
Theorem | lindff 20202 | Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → 𝐹:dom 𝐹⟶𝐵) | ||
Theorem | lindfind 20203 | A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐿) & ⊢ 𝐾 = (Base‘𝐿) ⇒ ⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) | ||
Theorem | lindsind 20204 | A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐿) & ⊢ 𝐾 = (Base‘𝐿) ⇒ ⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))) | ||
Theorem | lindfind2 20205 | In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ¬ (𝐹‘𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) | ||
Theorem | lindsind2 20206 | In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) | ||
Theorem | lindff1 20207 | A linearly independent family over a nonzero ring has no repeated elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→𝐵) | ||
Theorem | lindfrn 20208 | The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) | ||
Theorem | f1lindf 20209 | Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐹 ∘ 𝐺) LIndF 𝑊) | ||
Theorem | lindfres 20210 | Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) | ||
Theorem | lindsss 20211 | Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ∈ (LIndS‘𝑊)) | ||
Theorem | f1linds 20212 | A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) | ||
Theorem | islindf3 20213 | In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) | ||
Theorem | lindfmm 20214 | Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇)) | ||
Theorem | lindsmm 20215 | Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇))) | ||
Theorem | lindsmm2 20216 | The monomorphic image of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ∈ (LIndS‘𝑆)) → (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) | ||
Theorem | lsslindf 20217 | Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s 𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 LIndF 𝑋 ↔ 𝐹 LIndF 𝑊)) | ||
Theorem | lsslinds 20218 | Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s 𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊))) | ||
Theorem | islbs4 20219 | A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) ‘𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) ⇒ ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) | ||
Theorem | lbslinds 20220 | A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ 𝐽 ⊆ (LIndS‘𝑊) | ||
Theorem | islinds3 20221 | A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s (𝐾‘𝑌)) & ⊢ 𝐽 = (LBasis‘𝑋) ⇒ ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ 𝐽)) | ||
Theorem | islinds4 20222* | A set is independent in a vector space iff it is a subset of some basis. (AC equivalent) (Contributed by Stefan O'Rear, 24-Feb-2015.) |
⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) | ||
Theorem | lmimlbs 20223 | The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ 𝐽 = (LBasis‘𝑆) & ⊢ 𝐾 = (LBasis‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ 𝐾) | ||
Theorem | lmiclbs 20224 | Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ 𝐽 = (LBasis‘𝑆) & ⊢ 𝐾 = (LBasis‘𝑇) ⇒ ⊢ (𝑆 ≃𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅)) | ||
Theorem | islindf4 20225* | A family is independent iff it has no nontrivial representations of zero. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑌 = (0g‘𝑅) & ⊢ 𝐿 = (Base‘(𝑅 freeLMod 𝐼)) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥 ∈ 𝐿 ((𝑊 Σg (𝑥 ∘𝑓 · 𝐹)) = 0 → 𝑥 = (𝐼 × {𝑌})))) | ||
Theorem | islindf5 20226* | A family is independent iff the linear combinations homomorphism is injective. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘𝑓 · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) | ||
Theorem | indlcim 20227* | An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝑁 = (LSpan‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘𝑓 · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) & ⊢ (𝜑 → 𝐴 LIndF 𝑇) & ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) | ||
Theorem | lbslcic 20228 | A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) | ||
Theorem | lmisfree 20229* | A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 19213 might be described as "every vector space is free." (Contributed by Stefan O'Rear, 26-Feb-2015.) |
⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) | ||
Theorem | lvecisfrlm 20230* | Every vector space is isomorphic to a free module. (Contributed by AV, 7-Mar-2019.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) | ||
Theorem | lmimco 20231 | The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.) |
⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) | ||
Theorem | lmictra 20232 | Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019.) |
⊢ ((𝑅 ≃𝑚 𝑆 ∧ 𝑆 ≃𝑚 𝑇) → 𝑅 ≃𝑚 𝑇) | ||
Theorem | uvcf1o 20233 | In a nonzero ring, the mapping of the index set of a free module onto the unit vectors of the free module is a 1-1 onto function. (Contributed by AV, 10-Mar-2019.) |
⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1-onto→ran 𝑈) | ||
Theorem | uvcendim 20234 | In a nonzero ring, the number of unit vectors of a free module corresponds to the dimension of the free module. (Contributed by AV, 10-Mar-2019.) |
⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝐼 ≈ ran 𝑈) | ||
Theorem | frlmisfrlm 20235 | A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019.) |
⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽)) | ||
Theorem | frlmiscvec 20236 | Every free module is isomorphic to the free module of "column vectors" of the same dimension over the same (nonzero) ring. (Contributed by AV, 10-Mar-2019.) |
⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod (𝐼 × {∅}))) | ||
According to Wikipedia ("Matrix (mathemetics)", 02-Apr-2019, https://en.wikipedia.org/wiki/Matrix_(mathematics)) "A matrix is a rectangular array of numbers or other mathematical objects for which operations such as addition and multiplication are defined. Most commonly, a matrix over a field F is a rectangular array of scalars each of which is a member of F. The numbers, symbols or expressions in the matrix are called its entries or its elements. The horizontal and vertical lines of entries in a matrix are called rows and columns, respectively.", and in the definition of [Lang] p. 503 "By an m x n matrix in [a commutative ring] R one means a doubly indexed family of elements of R, (aij), (i= 1,..., m and j = 1,... n) ... We call the elements aij the coefficients or components of the matrix. A 1 x n matrix is called a row vector (of dimension, or size, n) and a m x 1 matrix is called a column vector (of dimension, or size, m). In general, we say that (m,n) is the size of the matrix, ...". In contrast to these definitions, we denote any free module over a (not necessarily commutative) ring (in the meaning of df-frlm 20139) with a Cartesian product as index set as "matrix". The two sets of the Cartesian product even need neither to be ordered or a range of (nonnegative/positive) integers nor finite. By this, the addition and scalar multiplication for matrices correspond to the addition (see frlmplusgval 20155) and scalar multiplication (see frlmvscafval 20157) for free modules. Actually, there isn't a definition for (arbitrary) matrices: Even the (general) matrix multiplication can be defined using functions from Cartesian products into a ring (which are elements of the base set of free modules), see df-mamu 20238. By this, a statement like "Then the set of m x n matrices in R is a module (i.e. an R-module)" as in [Lang] p. 504 follows immediately from frlmlmod 20141. However, for square matrices there is the definition df-mat 20262, defining the algebras of square matrices (of the same size over the same ring), extending the structure of the corresponding free module by the matrix multiplication as ring multiplication. A "usual" matrix (aij), (i= 1,..., m and j = 1,... n) would be represented as element of (the base set of) (𝑅 freeLMod ((1...𝑚) × (1...𝑛))), and a square matrix (aij), (i= 1,..., n and j = 1,... n) would be represented as element of (the base set of) ((1...𝑛) Mat 𝑅). Finally, it should be mentioned that our definitions of matrices include the zero-dimensional cases, which is excluded in the definition of many authors, e.g. in [Lang] p. 503. It is shown in mat0dimbas0 20320 that the empty set is the sole zero-dimensional matrix (also called "empty matrix", see Wikipedia https://en.wikipedia.org/wiki/Matrix_(mathematics)#Empty_matrices). The determinant is also defined for such an empty matrix, see mdet0pr 20446. | ||
This section is about the multiplication of m x n matrices. | ||
Syntax | cmmul 20237 | Syntax for the matrix multiplication operator. |
class maMul | ||
Definition | df-mamu 20238* | The operator which multiplies an m x n matrix with an n x p matrix, see also the definition in [Lang] p. 504. Note that it is not generally possible to recover the dimensions from the matrix, since all n x 0 and all 0 x n matrices are represented by the empty set. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ maMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ ⦋(1st ‘(1st ‘𝑜)) / 𝑚⦌⦋(2nd ‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd ‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑𝑚 (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑𝑚 (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))))))) | ||
Theorem | mamufval 20239* | Functional value of the matrix multiplication operator. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑃)) ↦ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))))) | ||
Theorem | mamuval 20240* | Multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑃))) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) | ||
Theorem | mamufv 20241* | A cell in the multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑃))) & ⊢ (𝜑 → 𝐼 ∈ 𝑀) & ⊢ (𝜑 → 𝐾 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾))))) | ||
Theorem | mamudm 20242 | The domain of the matrix multiplication function. (Contributed by AV, 10-Feb-2019.) |
⊢ 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃)) & ⊢ 𝐶 = (Base‘𝐹) & ⊢ × = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶)) | ||
Theorem | mamufacex 20243 | Every solution of the equation 𝐴∗𝑋 = 𝐵 for matrices 𝐴 and 𝐵 is a matrix. (Contributed by AV, 10-Feb-2019.) |
⊢ 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃)) & ⊢ 𝐶 = (Base‘𝐹) & ⊢ × = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐺 = (𝑅 freeLMod (𝑀 × 𝑃)) & ⊢ 𝐷 = (Base‘𝐺) ⇒ ⊢ (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌 → 𝑍 ∈ 𝐶)) | ||
Theorem | mamures 20244 | Rows in a matrix product are functions only of the corresponding rows in the left argument. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐺 = (𝑅 maMul 〈𝐼, 𝑁, 𝑃〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝐼 ⊆ 𝑀) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑃))) ⇒ ⊢ (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌)) | ||
Theorem | mndvcl 20245 | Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼) ∧ 𝑌 ∈ (𝐵 ↑𝑚 𝐼)) → (𝑋 ∘𝑓 + 𝑌) ∈ (𝐵 ↑𝑚 𝐼)) | ||
Theorem | mndvass 20246 | Tuple-wise associativity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑𝑚 𝐼) ∧ 𝑌 ∈ (𝐵 ↑𝑚 𝐼) ∧ 𝑍 ∈ (𝐵 ↑𝑚 𝐼))) → ((𝑋 ∘𝑓 + 𝑌) ∘𝑓 + 𝑍) = (𝑋 ∘𝑓 + (𝑌 ∘𝑓 + 𝑍))) | ||
Theorem | mndvlid 20247 | Tuple-wise left identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → ((𝐼 × { 0 }) ∘𝑓 + 𝑋) = 𝑋) | ||
Theorem | mndvrid 20248 | Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → (𝑋 ∘𝑓 + (𝐼 × { 0 })) = 𝑋) | ||
Theorem | grpvlinv 20249 | Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → ((𝑁 ∘ 𝑋) ∘𝑓 + 𝑋) = (𝐼 × { 0 })) | ||
Theorem | grpvrinv 20250 | Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → (𝑋 ∘𝑓 + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) | ||
Theorem | mhmvlin 20251 | Tuple extension of monoid homomorphisms. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+g‘𝑁) ⇒ ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼) ∧ 𝑌 ∈ (𝐵 ↑𝑚 𝐼)) → (𝐹 ∘ (𝑋 ∘𝑓 + 𝑌)) = ((𝐹 ∘ 𝑋) ∘𝑓 ⨣ (𝐹 ∘ 𝑌))) | ||
Theorem | ringvcl 20252 | Tuple-wise multiplication closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼) ∧ 𝑌 ∈ (𝐵 ↑𝑚 𝐼)) → (𝑋 ∘𝑓 · 𝑌) ∈ (𝐵 ↑𝑚 𝐼)) | ||
Theorem | gsumcom3 20253* | A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) | ||
Theorem | gsumcom3fi 20254* | A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) | ||
Theorem | mamucl 20255 | Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑃))) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑃))) | ||
Theorem | mamuass 20256 | Matrix multiplication is associative, see also statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑂 × 𝑃))) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ 𝐺 = (𝑅 maMul 〈𝑀, 𝑂, 𝑃〉) & ⊢ 𝐻 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐼 = (𝑅 maMul 〈𝑁, 𝑂, 𝑃〉) ⇒ ⊢ (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍))) | ||
Theorem | mamudi 20257 | Matrix multiplication distributes over addition on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → ((𝑋 ∘𝑓 + 𝑌)𝐹𝑍) = ((𝑋𝐹𝑍) ∘𝑓 + (𝑌𝐹𝑍))) | ||
Theorem | mamudir 20258 | Matrix multiplication distributes over addition on the right. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → (𝑋𝐹(𝑌 ∘𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))) | ||
Theorem | mamuvs1 20259 | Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))) | ||
Theorem | mamuvs2 20260 | Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.) |
⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))) | ||
In the following, the square matrix algebra is defined as extensible structure Mat. In this subsection, however, only square matrices and their basic properties are regarded. This includes showing that (𝑁 Mat 𝑅) is a left module, see matlmod 20283. That (𝑁 Mat 𝑅) is a ring and an associative algebra is shown in the next subsection, after theorems about the identity matrix are available. Nevertheless, (𝑁 Mat 𝑅) is called "matrix ring" or "matrix algebra" already in this subsection. | ||
Syntax | cmat 20261 | Syntax for the square matrix algebra. |
class Mat | ||
Definition | df-mat 20262* | Define the algebra of n x n matrices over a ring r. (Contributed by Stefan O'Rear, 31-Aug-2015.) |
⊢ Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) | ||
Theorem | matbas0pc 20263 | There is no matrix with a proper class either as dimension or as underlying ring. (Contributed by AV, 28-Dec-2018.) |
⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) | ||
Theorem | matbas0 20264 | There is no matrix for a not finite dimension or a proper class as the underlying ring. (Contributed by AV, 28-Dec-2018.) |
⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) | ||
Theorem | matval 20265 | Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) & ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = (𝐺 sSet 〈(.r‘ndx), · 〉)) | ||
Theorem | matrcl 20266 | Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) | ||
Theorem | matbas 20267 | The matrix ring has the same base set as its underlying group. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Base‘𝐺) = (Base‘𝐴)) | ||
Theorem | matplusg 20268 | The matrix ring has the same addition as its underlying group. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (+g‘𝐺) = (+g‘𝐴)) | ||
Theorem | matsca 20269 | The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘𝐺) = (Scalar‘𝐴)) | ||
Theorem | matvsca 20270 | The matrix ring has the same scalar multiplication as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → ( ·𝑠 ‘𝐺) = ( ·𝑠 ‘𝐴)) | ||
Theorem | mat0 20271 | The matrix ring has the same zero as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (0g‘𝐺) = (0g‘𝐴)) | ||
Theorem | matinvg 20272 | The matrix ring has the same additive inverse as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (invg‘𝐺) = (invg‘𝐴)) | ||
Theorem | mat0op 20273* | Value of a zero matrix as operation. (Contributed by AV, 2-Dec-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 0 )) | ||
Theorem | matsca2 20274 | The scalars of the matrix ring are the underlying ring. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 = (Scalar‘𝐴)) | ||
Theorem | matbas2 20275 | The base set of the matrix ring as a set exponential. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 16-Dec-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝐾 ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) | ||
Theorem | matbas2i 20276 | A matrix is a function. (Contributed by Stefan O'Rear, 11-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁))) | ||
Theorem | matbas2d 20277* | The base set of the matrix ring as a mapping operation. (Contributed by Stefan O'Rear, 11-Jul-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 𝐶) ∈ 𝐵) | ||
Theorem | eqmat 20278* | Two square matrices of the same dimension are equal if they have the same entries. (Contributed by AV, 25-Sep-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑋𝑗) = (𝑖𝑌𝑗))) | ||
Theorem | matecl 20279 | Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) | ||
Theorem | matecld 20280 | Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring, deduction form. (Contributed by AV, 27-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ (𝜑 → 𝐽 ∈ 𝑁) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) ∈ 𝐾) | ||
Theorem | matplusg2 20281 | Addition in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ ✚ = (+g‘𝐴) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘𝑓 + 𝑌)) | ||
Theorem | matvsca2 20282 | Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ × = (.r‘𝑅) & ⊢ 𝐶 = (𝑁 × 𝑁) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘𝑓 × 𝑌)) | ||
Theorem | matlmod 20283 | The matrix ring is a linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) | ||
Theorem | matgrp 20284 | The matrix ring is a group. (Contributed by AV, 21-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp) | ||
Theorem | matvscl 20285 | Closure of the scalar multiplication in the matrix ring. (lmodvscl 18928 analog.) (Contributed by AV, 27-Nov-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = ( ·𝑠 ‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → (𝐶 · 𝑋) ∈ 𝐵) | ||
Theorem | matsubg 20286 | The matrix ring has the same addition as its underlying group. (Contributed by AV, 2-Aug-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (-g‘𝐺) = (-g‘𝐴)) | ||
Theorem | matplusgcell 20287 | Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ ✚ = (+g‘𝐴) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 ✚ 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽))) | ||
Theorem | matsubgcell 20288 | Subtraction in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (-g‘𝐴) & ⊢ − = (-g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋𝑆𝑌)𝐽) = ((𝐼𝑋𝐽) − (𝐼𝑌𝐽))) | ||
Theorem | matinvgcell 20289 | Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑉 = (invg‘𝑅) & ⊢ 𝑊 = (invg‘𝐴) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑊‘𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽))) | ||
Theorem | matvscacell 20290 | Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐴) & ⊢ × = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 · 𝑌)𝐽) = (𝑋 × (𝐼𝑌𝐽))) | ||
Theorem | matgsum 20291* | Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈) ∈ 𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈)) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐴 Σg (𝑦 ∈ 𝐽 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝑈))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | ||
The main result of this subsection are the theorems showing that (𝑁 Mat 𝑅) is a ring (see matring 20297) and an associative algebra (see matassa 20298). Additionally, theorems for the identity matrix and transposed matrices are provided. | ||
Theorem | matmulr 20292 | Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → · = (.r‘𝐴)) | ||
Theorem | mamumat1cl 20293* | The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑀))) | ||
Theorem | mat1comp 20294* | The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) ⇒ ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) | ||
Theorem | mamulid 20295* | The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑀, 𝑁〉) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) ⇒ ⊢ (𝜑 → (𝐼𝐹𝑋) = 𝑋) | ||
Theorem | mamurid 20296* | The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝐹 = (𝑅 maMul 〈𝑁, 𝑀, 𝑀〉) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑀))) ⇒ ⊢ (𝜑 → (𝑋𝐹𝐼) = 𝑋) | ||
Theorem | matring 20297 | Existence of the matrix ring, see also the statement in [Lang] p. 504: "For a given integer n > 0 the set of square n x n matrices form a ring." (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) | ||
Theorem | matassa 20298 | Existence of the matrix algebra, see also the statement in [Lang] p. 505:"Then Matn(R) is an algebra over R" . (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ AssAlg) | ||
Theorem | matmulcell 20299* | Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝐴) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) | ||
Theorem | mpt2matmul 20300* | Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝐴) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ 𝑋 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐶) & ⊢ 𝑌 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 𝐸) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐸 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑘 = 𝑖 ∧ 𝑚 = 𝑗)) → 𝐷 = 𝐶) & ⊢ ((𝜑 ∧ (𝑚 = 𝑖 ∧ 𝑙 = 𝑗)) → 𝐹 = 𝐸) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑚 ∈ 𝑁) → 𝐷 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑅 Σg (𝑚 ∈ 𝑁 ↦ (𝐷 · 𝐹))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |