![]() |
Metamath
Proof Explorer Theorem List (p. 199 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnfldcj 19801 | The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
⊢ ∗ = (*𝑟‘ℂfld) | ||
Theorem | cnfldtset 19802 | The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | ||
Theorem | cnfldle 19803 | The ordering of the field of complex numbers. (Note that this is not actually an ordering on ℂ, but we put it in the structure anyway because restricting to ℝ does not affect this component, so that (ℂfld ↾s ℝ) is an ordered field even though ℂfld itself is not.) (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
⊢ ≤ = (le‘ℂfld) | ||
Theorem | cnfldds 19804 | The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
⊢ (abs ∘ − ) = (dist‘ℂfld) | ||
Theorem | cnfldunif 19805 | The uniform structure component of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld) | ||
Theorem | cnfldfun 19806 | The field of complex numbers is a function. (Contributed by AV, 14-Nov-2021.) |
⊢ Fun ℂfld | ||
Theorem | cnfldfunALT 19807 | Alternate proof of cnfldfun 19806 (much shorter proof, using cnfldstr 19796 and structn0fun 15916: in addition, it must be shown that ∅ ∉ ℂfld). (Contributed by AV, 18-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Fun ℂfld | ||
Theorem | xrsstr 19808 | The extended real structure is a structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ*𝑠 Struct 〈1, ;12〉 | ||
Theorem | xrsex 19809 | The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ*𝑠 ∈ V | ||
Theorem | xrsbas 19810 | The base set of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ* = (Base‘ℝ*𝑠) | ||
Theorem | xrsadd 19811 | The addition operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ +𝑒 = (+g‘ℝ*𝑠) | ||
Theorem | xrsmul 19812 | The multiplication operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ·e = (.r‘ℝ*𝑠) | ||
Theorem | xrstset 19813 | The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠) | ||
Theorem | xrsle 19814 | The ordering of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ≤ = (le‘ℝ*𝑠) | ||
Theorem | cncrng 19815 | The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.) |
⊢ ℂfld ∈ CRing | ||
Theorem | cnring 19816 | The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ ℂfld ∈ Ring | ||
Theorem | xrsmcmn 19817 | The multiplicative group of the extended reals forms a commutative monoid (even though the additive group is not, see xrsmgmdifsgrp 19831.) (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (mulGrp‘ℝ*𝑠) ∈ CMnd | ||
Theorem | cnfld0 19818 | The zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 0 = (0g‘ℂfld) | ||
Theorem | cnfld1 19819 | The unit element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 1 = (1r‘ℂfld) | ||
Theorem | cnfldneg 19820 | The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ (𝑋 ∈ ℂ → ((invg‘ℂfld)‘𝑋) = -𝑋) | ||
Theorem | cnfldplusf 19821 | The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ + = (+𝑓‘ℂfld) | ||
Theorem | cnfldsub 19822 | The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ − = (-g‘ℂfld) | ||
Theorem | cndrng 19823 | The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ ℂfld ∈ DivRing | ||
Theorem | cnflddiv 19824 | The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
⊢ / = (/r‘ℂfld) | ||
Theorem | cnfldinv 19825 | The multiplicative inverse in the field of complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) | ||
Theorem | cnfldmulg 19826 | The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)) | ||
Theorem | cnfldexp 19827 | The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝐵)) | ||
Theorem | cnsrng 19828 | The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ℂfld ∈ *-Ring | ||
Theorem | xrsmgm 19829 | The (additive group of the) extended reals is a magma. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∈ Mgm | ||
Theorem | xrsnsgrp 19830 | The (additive group of the) extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∉ SGrp | ||
Theorem | xrsmgmdifsgrp 19831 | The (additive group of the) extended reals is a magma, but not a semigroup, and therefore also no monoid and no group, in contrast to the multiplicative group, see xrsmcmn 19817. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∈ (Mgm ∖ SGrp) | ||
Theorem | xrs1mnd 19832 | The extended real numbers, restricted to ℝ* ∖ {-∞}, form a monoid - in contrast to the full structure, see xrsmgmdifsgrp 19831. (Contributed by Mario Carneiro, 27-Nov-2014.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 𝑅 ∈ Mnd | ||
Theorem | xrs10 19833 | The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 0 = (0g‘𝑅) | ||
Theorem | xrs1cmn 19834 | The extended real numbers restricted to ℝ* ∖ {-∞} form a commutative monoid. They are not a group because 1 + +∞ = 2 + +∞ even though 1 ≠ 2. (Contributed by Mario Carneiro, 27-Nov-2014.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 𝑅 ∈ CMnd | ||
Theorem | xrge0subm 19835 | The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) | ||
Theorem | xrge0cmn 19836 | The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | ||
Theorem | xrsds 19837* | The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) | ||
Theorem | xrsdsval 19838 | The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) | ||
Theorem | xrsdsreval 19839 | The metric of the extended real number structure coincides with the real number metric on the reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
Theorem | xrsdsreclblem 19840 | Lemma for xrsdsreclb 19841. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 ≤ 𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) | ||
Theorem | xrsdsreclb 19841 | The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) | ||
Theorem | cnsubmlem 19842* | Lemma for nn0subm 19849 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ 0 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubMnd‘ℂfld) | ||
Theorem | cnsubglem 19843* | Lemma for resubdrg 20002 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 𝐵 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubGrp‘ℂfld) | ||
Theorem | cnsubrglem 19844* | Lemma for resubdrg 20002 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubRing‘ℂfld) | ||
Theorem | cnsubdrglem 19845* | Lemma for resubdrg 20002 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐴) ∈ DivRing) | ||
Theorem | qsubdrg 19846 | The rational numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | ||
Theorem | zsubrg 19847 | The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ℤ ∈ (SubRing‘ℂfld) | ||
Theorem | gzsubrg 19848 | The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ℤ[i] ∈ (SubRing‘ℂfld) | ||
Theorem | nn0subm 19849 | The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ ℕ0 ∈ (SubMnd‘ℂfld) | ||
Theorem | rege0subm 19850 | The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (0[,)+∞) ∈ (SubMnd‘ℂfld) | ||
Theorem | absabv 19851 | The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ abs ∈ (AbsVal‘ℂfld) | ||
Theorem | zsssubrg 19852 | The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) | ||
Theorem | qsssubdrg 19853 | The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅) | ||
Theorem | cnsubrg 19854 | There are no subrings of the complex numbers strictly between ℝ and ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ}) | ||
Theorem | cnmgpabl 19855 | The unit group of the complex numbers is an abelian group. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ 𝑀 ∈ Abel | ||
Theorem | cnmgpid 19856 | The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007.) (Revised by AV, 26-Aug-2021.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ (0g‘𝑀) = 1 | ||
Theorem | cnmsubglem 19857* | Lemma for rpmsubg 19858 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubGrp‘𝑀) | ||
Theorem | rpmsubg 19858 | The positive reals form a multiplicative subgroup of the complex numbers. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ ℝ+ ∈ (SubGrp‘𝑀) | ||
Theorem | gzrngunitlem 19859 | Lemma for gzrngunit 19860. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑍 = (ℂfld ↾s ℤ[i]) ⇒ ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) | ||
Theorem | gzrngunit 19860 | The units on ℤ[i] are the gaussian integers with norm 1. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑍 = (ℂfld ↾s ℤ[i]) ⇒ ⊢ (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1)) | ||
Theorem | gsumfsum 19861* | Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | regsumfsum 19862* | Relate a group sum on (ℂfld ↾s ℝ) to a finite sum on the reals. Cf. gsumfsum 19861. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((ℂfld ↾s ℝ) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | expmhm 19863* | Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑁 = (ℂfld ↾s ℕ0) & ⊢ 𝑀 = (mulGrp‘ℂfld) ⇒ ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴↑𝑥)) ∈ (𝑁 MndHom 𝑀)) | ||
Theorem | nn0srg 19864 | The nonnegative integers form a semiring (commutative by subcmn 18288). (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ (ℂfld ↾s ℕ0) ∈ SRing | ||
Theorem | rge0srg 19865 | The nonnegative real numbers form a semiring (commutative by subcmn 18288). (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ (ℂfld ↾s (0[,)+∞)) ∈ SRing | ||
According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring 𝑍." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by (ℂfld ↾s ℤ), the field of complex numbers restricted to the integers. In zringring 19869 it is shown that this restriction is a ring (it is actually a principal ideal ring as shown in zringlpir 19885), and zringbas 19872 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as definition df-zring 19867 of the ring of integers. Remark: Instead of using the symbol "ZZrng" analogous to ℂfld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra)). | ||
Syntax | zring 19866 | Extend class notation with the (unital) ring of integers. |
class ℤring | ||
Definition | df-zring 19867 | The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
⊢ ℤring = (ℂfld ↾s ℤ) | ||
Theorem | zringcrng 19868 | The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.) |
⊢ ℤring ∈ CRing | ||
Theorem | zringring 19869 | The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.) |
⊢ ℤring ∈ Ring | ||
Theorem | zringabl 19870 | The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.) |
⊢ ℤring ∈ Abel | ||
Theorem | zringgrp 19871 | The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.) |
⊢ ℤring ∈ Grp | ||
Theorem | zringbas 19872 | The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ ℤ = (Base‘ℤring) | ||
Theorem | zringplusg 19873 | The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ + = (+g‘ℤring) | ||
Theorem | zringmulg 19874 | The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(.g‘ℤring)𝐵) = (𝐴 · 𝐵)) | ||
Theorem | zringmulr 19875 | The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ · = (.r‘ℤring) | ||
Theorem | zring0 19876 | The neutral element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ 0 = (0g‘ℤring) | ||
Theorem | zring1 19877 | The multiplicative neutral element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ 1 = (1r‘ℤring) | ||
Theorem | zringnzr 19878 | The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.) |
⊢ ℤring ∈ NzRing | ||
Theorem | dvdsrzring 19879 | Ring divisibility in the ring of integers corresponds to ordinary divisibility in ℤ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
⊢ ∥ = (∥r‘ℤring) | ||
Theorem | zringlpirlem1 19880 | Lemma for zringlpir 19885. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) ⇒ ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) | ||
Theorem | zringlpirlem2 19881 | Lemma for zringlpir 19885. A nonzero ideal of integers contains the least positive element. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Revised by AV, 27-Sep-2020.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) & ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐼) | ||
Theorem | zringlpirlem3 19882 | Lemma for zringlpir 19885. All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) & ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝐺 ∥ 𝑋) | ||
Theorem | zringinvg 19883 | The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ (𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴)) | ||
Theorem | zringunit 19884 | The units of ℤ are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1)) | ||
Theorem | zringlpir 19885 | The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ ℤring ∈ LPIR | ||
Theorem | zringndrg 19886 | The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.) |
⊢ ℤring ∉ DivRing | ||
Theorem | zringcyg 19887 | The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 9-Jun-2019.) |
⊢ ℤring ∈ CycGrp | ||
Theorem | zringmpg 19888 | The multiplication group of the ring of integers is the restriction of the multiplication group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.) |
⊢ ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring) | ||
Theorem | prmirredlem 19889 | A positive integer is irreducible over ℤ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) | ||
Theorem | dfprm2 19890 | The positive irreducible elements of ℤ are the prime numbers. This is an alternative way to define ℙ. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ ℙ = (ℕ ∩ 𝐼) | ||
Theorem | prmirred 19891 | The irreducible elements of ℤ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) | ||
Theorem | expghm 19892* | Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) | ||
Theorem | mulgghm2 19893* | The powers of a group element give a homomorphism from ℤ to a group. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) | ||
Theorem | mulgrhm 19894* | The powers of the element 1 give a ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅)) | ||
Theorem | mulgrhm2 19895* | The powers of the element 1 give the unique ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) | ||
Syntax | czrh 19896 | Map the rationals into a field, or the integers into a ring. |
class ℤRHom | ||
Syntax | czlm 19897 | Augment an abelian group with vector space operations to turn it into a ℤ-module. |
class ℤMod | ||
Syntax | cchr 19898 | Syntax for ring characteristic. |
class chr | ||
Syntax | czn 19899 | The ring of integers modulo 𝑛. |
class ℤ/nℤ | ||
Definition | df-zrh 19900 | Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 𝑛 = 1r + 1r + ... + 1r for integers (see also df-mulg 17588). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |