![]() |
Metamath
Proof Explorer Theorem List (p. 197 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-coe1 19601* | Define the coefficient function for a univariate polynomial. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1𝑜 × {𝑛})))) | ||
Definition | df-toply1 19602* | Define a function which maps a coefficient function for a univariate polynomial to the corresponding polynomial object. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ toPoly1 = (𝑓 ∈ V ↦ (𝑛 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑓‘(𝑛‘∅)))) | ||
Theorem | psr1baslem 19603 | The set of finite bags on 1𝑜 is just the set of all functions from 1𝑜 to ℕ0. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ (ℕ0 ↑𝑚 1𝑜) = {𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑓 “ ℕ) ∈ Fin} | ||
Theorem | psr1val 19604 | Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ 𝑆 = ((1𝑜 ordPwSer 𝑅)‘∅) | ||
Theorem | psr1crng 19605 | The ring of univariate power series is a commutative ring. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑆 ∈ CRing) | ||
Theorem | psr1assa 19606 | The ring of univariate power series is an associative algebra. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑆 ∈ AssAlg) | ||
Theorem | psr1tos 19607 | The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 2-Jun-2015.) |
⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ Toset → 𝑆 ∈ Toset) | ||
Theorem | psr1bas2 19608 | The base set of the ring of univariate power series. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑂 = (1𝑜 mPwSer 𝑅) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
Theorem | psr1bas 19609 | The base set of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ 𝐵 = (𝐾 ↑𝑚 (ℕ0 ↑𝑚 1𝑜)) | ||
Theorem | vr1val 19610 | The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1𝑜 = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ 𝑋 = ((1𝑜 mVar 𝑅)‘∅) | ||
Theorem | vr1cl2 19611 | The variable 𝑋 is a member of the power series algebra 𝑅[[𝑋]]. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) | ||
Theorem | ply1val 19612 | The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ 𝑃 = (𝑆 ↾s (Base‘(1𝑜 mPoly 𝑅))) | ||
Theorem | ply1bas 19613 | The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ 𝑈 = (Base‘(1𝑜 mPoly 𝑅)) | ||
Theorem | ply1lss 19614 | Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘𝑆)) | ||
Theorem | ply1subrg 19615 | Univariate polynomials form a subring of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubRing‘𝑆)) | ||
Theorem | ply1crng 19616 | The ring of univariate polynomials is a commutative ring. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) | ||
Theorem | ply1assa 19617 | The ring of univariate polynomials is an associative algebra. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑃 ∈ AssAlg) | ||
Theorem | psr1bascl 19618 | A univariate power series is a multivariate power series on one index. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝑃 = (PwSer1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(1𝑜 mPwSer 𝑅))) | ||
Theorem | psr1basf 19619 | Univariate power series base set elements are functions. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝑃 = (PwSer1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑𝑚 1𝑜)⟶𝐾) | ||
Theorem | ply1basf 19620 | Univariate polynomial base set elements are functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑𝑚 1𝑜)⟶𝐾) | ||
Theorem | ply1bascl 19621 | A univariate polynomial is a univariate power series. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(PwSer1‘𝑅))) | ||
Theorem | ply1bascl2 19622 | A univariate polynomial is a multivariate polynomial on one index. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(1𝑜 mPoly 𝑅))) | ||
Theorem | coe1fval 19623* | Value of the univariate polynomial coefficient function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ (𝐹 ∈ 𝑉 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛})))) | ||
Theorem | coe1fv 19624 | Value of an evaluated coefficient in a polynomial coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴‘𝑁) = (𝐹‘(1𝑜 × {𝑁}))) | ||
Theorem | fvcoe1 19625 | Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑𝑚 1𝑜)) → (𝐹‘𝑋) = (𝐴‘(𝑋‘∅))) | ||
Theorem | coe1fval3 19626* | Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (PwSer1‘𝑅) & ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1𝑜 × {𝑦})) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) | ||
Theorem | coe1f2 19627 | Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (PwSer1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) | ||
Theorem | coe1fval2 19628* | Univariate polynomial coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1𝑜 × {𝑦})) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) | ||
Theorem | coe1f 19629 | Functionality of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) | ||
Theorem | coe1fvalcl 19630 | A coefficient of a univariate polynomial over a class/ring is an element of this class/ring. (Contributed by AV, 9-Oct-2019.) |
⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) → (𝐴‘𝑁) ∈ 𝐾) | ||
Theorem | coe1sfi 19631 | Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.) |
⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) | ||
Theorem | coe1fsupp 19632* | The coefficient vector of a univariate polynomial is a finitely supported mapping from the nonnegative integers to the elements of the coefficient class/ring for the polynomial. (Contributed by AV, 3-Oct-2019.) |
⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐴 ∈ {𝑔 ∈ (𝐾 ↑𝑚 ℕ0) ∣ 𝑔 finSupp 0 }) | ||
Theorem | mptcoe1fsupp 19633* | A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) | ||
Theorem | coe1ae0 19634* | The coefficient vector of a univariate polynomial is 0 almost everywhere. (Contributed by AV, 19-Oct-2019.) |
⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 )) | ||
Theorem | vr1cl 19635 | The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) | ||
Theorem | opsr0 19636 | Zero in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑂)) | ||
Theorem | opsr1 19637 | One in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (1r‘𝑆) = (1r‘𝑂)) | ||
Theorem | mplplusg 19638 | Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ + = (+g‘𝑌) ⇒ ⊢ + = (+g‘𝑆) | ||
Theorem | mplmulr 19639 | Value of multiplication in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ · = (.r‘𝑌) ⇒ ⊢ · = (.r‘𝑆) | ||
Theorem | psr1plusg 19640 | Value of addition in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑌 = (PwSer1‘𝑅) & ⊢ 𝑆 = (1𝑜 mPwSer 𝑅) & ⊢ + = (+g‘𝑌) ⇒ ⊢ + = (+g‘𝑆) | ||
Theorem | psr1vsca 19641 | Value of scalar multiplication in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑌 = (PwSer1‘𝑅) & ⊢ 𝑆 = (1𝑜 mPwSer 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) ⇒ ⊢ · = ( ·𝑠 ‘𝑆) | ||
Theorem | psr1mulr 19642 | Value of multiplication in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑌 = (PwSer1‘𝑅) & ⊢ 𝑆 = (1𝑜 mPwSer 𝑅) & ⊢ · = (.r‘𝑌) ⇒ ⊢ · = (.r‘𝑆) | ||
Theorem | ply1plusg 19643 | Value of addition in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝑆 = (1𝑜 mPoly 𝑅) & ⊢ + = (+g‘𝑌) ⇒ ⊢ + = (+g‘𝑆) | ||
Theorem | ply1vsca 19644 | Value of scalar multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝑆 = (1𝑜 mPoly 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) ⇒ ⊢ · = ( ·𝑠 ‘𝑆) | ||
Theorem | ply1mulr 19645 | Value of multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝑆 = (1𝑜 mPoly 𝑅) & ⊢ · = (.r‘𝑌) ⇒ ⊢ · = (.r‘𝑆) | ||
Theorem | ressply1bas2 19646 | The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑊 = (PwSer1‘𝐻) & ⊢ 𝐶 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) | ||
Theorem | ressply1bas 19647 | A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) | ||
Theorem | ressply1add 19648 | A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) | ||
Theorem | ressply1mul 19649 | A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) | ||
Theorem | ressply1vsca 19650 | A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) | ||
Theorem | subrgply1 19651 | A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) | ||
Theorem | gsumply1subr 19652 | Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) | ||
Theorem | psrbaspropd 19653 | Property deduction for power series base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑆)) ⇒ ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) | ||
Theorem | psrplusgpropd 19654* | Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑆))) | ||
Theorem | mplbaspropd 19655* | Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Jul-2019.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) | ||
Theorem | psropprmul 19656 | Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 𝑌 = (𝐼 mPwSer 𝑅) & ⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝑍 = (𝐼 mPwSer 𝑆) & ⊢ · = (.r‘𝑌) & ⊢ ∙ = (.r‘𝑍) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝐺 · 𝐹)) | ||
Theorem | ply1opprmul 19657 | Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝑍 = (Poly1‘𝑆) & ⊢ · = (.r‘𝑌) & ⊢ ∙ = (.r‘𝑍) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝐺 · 𝐹)) | ||
Theorem | 00ply1bas 19658 | Lemma for ply1basfvi 19659 and deg1fvi 23890. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ ∅ = (Base‘(Poly1‘∅)) | ||
Theorem | ply1basfvi 19659 | Protection compatibility of the univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘( I ‘𝑅))) | ||
Theorem | ply1plusgfvi 19660 | Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) | ||
Theorem | ply1baspropd 19661* | Property deduction for univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑆))) | ||
Theorem | ply1plusgpropd 19662* | Property deduction for univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘𝑆))) | ||
Theorem | opsrring 19663 | Ordered power series form a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ Ring) | ||
Theorem | opsrlmod 19664 | Ordered power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ LMod) | ||
Theorem | psr1ring 19665 | Univariate power series form a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑆 ∈ Ring) | ||
Theorem | ply1ring 19666 | Univariate polynomials form a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | ||
Theorem | psr1lmod 19667 | Univariate power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑃 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) | ||
Theorem | psr1sca 19668 | Scalars of a univariate power series ring. (Contributed by Stefan O'Rear, 4-Jul-2015.) |
⊢ 𝑃 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) | ||
Theorem | psr1sca2 19669 | Scalars of a univariate power series ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑃 = (PwSer1‘𝑅) ⇒ ⊢ ( I ‘𝑅) = (Scalar‘𝑃) | ||
Theorem | ply1lmod 19670 | Univariate polynomials form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) | ||
Theorem | ply1sca 19671 | Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) | ||
Theorem | ply1sca2 19672 | Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ ( I ‘𝑅) = (Scalar‘𝑃) | ||
Theorem | ply1mpl0 19673 | The univariate polynomial ring has the same zero as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝑀 = (1𝑜 mPoly 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ 0 = (0g‘𝑀) | ||
Theorem | ply10s0 19674 | Zero times a univariate polynomial is the zero polynomial (lmod0vs 18944 analog.) (Contributed by AV, 2-Dec-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∗ = ( ·𝑠 ‘𝑃) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ( 0 ∗ 𝑀) = (0g‘𝑃)) | ||
Theorem | ply1mpl1 19675 | The univariate polynomial ring has the same one as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝑀 = (1𝑜 mPoly 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 1 = (1r‘𝑃) ⇒ ⊢ 1 = (1r‘𝑀) | ||
Theorem | ply1ascl 19676 | The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by Fan Zheng, 26-Jun-2016.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ 𝐴 = (algSc‘(1𝑜 mPoly 𝑅)) | ||
Theorem | subrg1ascl 19677 | The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐶 = (algSc‘𝑈) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) | ||
Theorem | subrg1asclcl 19678 | The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝐵 ↔ 𝑋 ∈ 𝑇)) | ||
Theorem | subrgvr1 19679 | The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 5-Jul-2015.) |
⊢ 𝑋 = (var1‘𝑅) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) ⇒ ⊢ (𝜑 → 𝑋 = (var1‘𝐻)) | ||
Theorem | subrgvr1cl 19680 | The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 5-Jul-2015.) |
⊢ 𝑋 = (var1‘𝑅) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
Theorem | coe1z 19681 | The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑌 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) | ||
Theorem | coe1add 19682 | The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ ✚ = (+g‘𝑌) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘𝑓 + (coe1‘𝐺))) | ||
Theorem | coe1addfv 19683 | A particular coefficient of an addition. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ ✚ = (+g‘𝑌) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 ✚ 𝐺))‘𝑋) = (((coe1‘𝐹)‘𝑋) + ((coe1‘𝐺)‘𝑋))) | ||
Theorem | coe1subfv 19684 | A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝑁 = (-g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 − 𝐺))‘𝑋) = (((coe1‘𝐹)‘𝑋)𝑁((coe1‘𝐺)‘𝑋))) | ||
Theorem | coe1mul2lem1 19685 | An equivalence for coe1mul2 19687. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑𝑚 1𝑜)) → (𝑋 ∘𝑟 ≤ (1𝑜 × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) | ||
Theorem | coe1mul2lem2 19686* | An equivalence for coe1mul2 19687. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝐻 = {𝑑 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ 𝑑 ∘𝑟 ≤ (1𝑜 × {𝑘})} ⇒ ⊢ (𝑘 ∈ ℕ0 → (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘)) | ||
Theorem | coe1mul2 19687* | The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ ∙ = (.r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ∙ 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) · ((coe1‘𝐺)‘(𝑘 − 𝑥))))))) | ||
Theorem | coe1mul 19688* | The coefficient vector of multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ ∙ = (.r‘𝑌) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ∙ 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) · ((coe1‘𝐺)‘(𝑘 − 𝑥))))))) | ||
Theorem | ply1moncl 19689 | Closure of the expression for a univariate primitive monomial. (Contributed by AV, 14-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0) → (𝐷 ↑ 𝑋) ∈ 𝐵) | ||
Theorem | ply1tmcl 19690 | Closure of the expression for a univariate polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 25-Nov-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) ∈ 𝐵) | ||
Theorem | coe1tm 19691* | Coefficient vector of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 ↑ 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))) | ||
Theorem | coe1tmfv1 19692 | Nonzero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) = 𝐶) | ||
Theorem | coe1tmfv2 19693 | Zero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ≠ 𝐹) ⇒ ⊢ (𝜑 → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐹) = 0 ) | ||
Theorem | coe1tmmul2 19694* | Coefficient vector of a polynomial multiplied on the right by a term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ × = (.r‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → (coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))) | ||
Theorem | coe1tmmul 19695* | Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ × = (.r‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → (coe1‘((𝐶 · (𝐷 ↑ 𝑋)) ∙ 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (𝐶 × ((coe1‘𝐴)‘(𝑥 − 𝐷))), 0 ))) | ||
Theorem | coe1tmmul2fv 19696 | Function value of a right-multiplication by a term in the shifted domain. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ × = (.r‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) | ||
Theorem | coe1pwmul 19697* | Coefficient vector of a polynomial multiplied on the left by a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → (coe1‘((𝐷 ↑ 𝑋) · 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))) | ||
Theorem | coe1pwmulfv 19698 | Function value of a right-multiplication by a variable power in the shifted domain. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) | ||
Theorem | ply1scltm 19699 | A scalar is a term with zero exponent. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐴‘𝐹) = (𝐹 · (0 ↑ 𝑋))) | ||
Theorem | coe1sclmul 19700 | Coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘𝑓 · (coe1‘𝑌))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |