![]() |
Metamath
Proof Explorer Theorem List (p. 196 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mplcrng 19501 | The polynomial ring is a commutative ring. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ CRing) | ||
Theorem | mplassa 19502 | The polynomial ring is an associative algebra. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg) | ||
Theorem | ressmplbas2 19503 | The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑊 = (𝐼 mPwSer 𝐻) & ⊢ 𝐶 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) | ||
Theorem | ressmplbas 19504 | A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) | ||
Theorem | ressmpladd 19505 | A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) | ||
Theorem | ressmplmul 19506 | A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) | ||
Theorem | ressmplvsca 19507 | A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) | ||
Theorem | subrgmpl 19508 | A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) | ||
Theorem | subrgmvr 19509 | The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) ⇒ ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) | ||
Theorem | subrgmvrf 19510 | The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) | ||
Theorem | mplmon 19511* | A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) | ||
Theorem | mplmonmul 19512* | The product of two monomials adds the exponent vectors together. For example, the product of (𝑥↑2)(𝑦↑2) with (𝑦↑1)(𝑧↑3) is (𝑥↑2)(𝑦↑3)(𝑧↑3), where the exponent vectors 〈2, 2, 0〉 and 〈0, 1, 3〉 are added to give 〈2, 3, 3〉. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘𝑓 + 𝑌), 1 , 0 ))) | ||
Theorem | mplcoe1 19513* | Decompose a polynomial into a finite sum of monomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = (𝑃 Σg (𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))) | ||
Theorem | mplcoe3 19514* | Decompose a monomial in one variable into a power of a variable. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 18-Jul-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 ↑ (𝑉‘𝑋))) | ||
Theorem | mplcoe5lem 19515* | Lemma for mplcoe4 19551. (Contributed by AV, 7-Oct-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) & ⊢ (𝜑 → 𝑆 ⊆ 𝐼) ⇒ ⊢ (𝜑 → ran (𝑘 ∈ 𝑆 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ 𝑆 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) | ||
Theorem | mplcoe5 19516* | Decompose a monomial into a finite product of powers of variables. Instead of assuming that 𝑅 is a commutative ring (as in mplcoe2 19517), it is sufficient that 𝑅 is a ring and all the variables of the multivariate polynomial commute. (Contributed by AV, 7-Oct-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) | ||
Theorem | mplcoe2 19517* | Decompose a monomial into a finite product of powers of variables. (The assumption that 𝑅 is a commutative ring is not strictly necessary, because the submonoid of monomials is in the center of the multiplicative monoid of polynomials, but it simplifies the proof.) (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) | ||
Theorem | mplbas2 19518 | An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐴 = (AlgSpan‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → (𝐴‘ran 𝑉) = (Base‘𝑃)) | ||
Theorem | ltbval 19519* | Value of the well-order on finite bags. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) | ||
Theorem | ltbwe 19520* | The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015.) |
⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 We 𝐼) ⇒ ⊢ (𝜑 → 𝐶 We 𝐷) | ||
Theorem | reldmopsr 19521 | Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
⊢ Rel dom ordPwSer | ||
Theorem | opsrval 19522* | The value of the "ordered power series" function. This is the same as mPwSer psrval 19410, but with the addition of a well-order on 𝐼 we can turn a strict order on 𝑅 into a strict order on the power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) | ||
Theorem | opsrle 19523* | An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ ≤ = (le‘𝑂) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) | ||
Theorem | opsrval2 19524 | Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ ≤ = (le‘𝑂) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) | ||
Theorem | opsrbaslem 19525 | Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 < ;10 ⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) | ||
Theorem | opsrbaslemOLD 19526 | Obsolete version of opsrbaslem 19525 as of 9-Sep-2021. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 < 10 ⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) | ||
Theorem | opsrbas 19527 | The base set of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑂)) | ||
Theorem | opsrplusg 19528 | The addition operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑂)) | ||
Theorem | opsrmulr 19529 | The multiplication operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑂)) | ||
Theorem | opsrvsca 19530 | The scalar product operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑂)) | ||
Theorem | opsrsca 19531 | The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝑂)) | ||
Theorem | opsrtoslem1 19532* | Lemma for opsrtos 19534. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜓 ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ (𝜑 → ≤ = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))) | ||
Theorem | opsrtoslem2 19533* | Lemma for opsrtos 19534. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜓 ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ (𝜑 → 𝑂 ∈ Toset) | ||
Theorem | opsrtos 19534 | The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) ⇒ ⊢ (𝜑 → 𝑂 ∈ Toset) | ||
Theorem | opsrso 19535 | The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) & ⊢ ≤ = (lt‘𝑂) & ⊢ 𝐵 = (Base‘𝑂) ⇒ ⊢ (𝜑 → ≤ Or 𝐵) | ||
Theorem | opsrcrng 19536 | The ring of ordered power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ CRing) | ||
Theorem | opsrassa 19537 | The ring of ordered power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ AssAlg) | ||
Theorem | mplrcl 19538 | Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝐼 ∈ V) | ||
Theorem | mplelsfi 19539 | A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 finSupp 0 ) | ||
Theorem | mvrf2 19540 | The power series/polynomial variable function maps indices to polynomials. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) | ||
Theorem | mplmon2 19541* | Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) | ||
Theorem | psrbag0 19542* | The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) ∈ 𝐷) | ||
Theorem | psrbagsn 19543* | A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) | ||
Theorem | mplascl 19544* | Value of the scalar injection into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) | ||
Theorem | mplasclf 19545 | The scalar injection is a function into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝐴:𝐾⟶𝐵) | ||
Theorem | subrgascl 19546 | The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐶 = (algSc‘𝑈) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) | ||
Theorem | subrgasclcl 19547 | The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝐵 ↔ 𝑋 ∈ 𝑇)) | ||
Theorem | mplmon2cl 19548* | A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐵) | ||
Theorem | mplmon2mul 19549* | Product of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) ⇒ ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 𝐹, 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 𝐺, 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘𝑓 + 𝑌), (𝐹 · 𝐺), 0 ))) | ||
Theorem | mplind 19550* | Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ + = (+g‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ 𝐶 = (algSc‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 + 𝑦) ∈ 𝐻) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 · 𝑦) ∈ 𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (𝐶‘𝑥) ∈ 𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑉‘𝑥) ∈ 𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ V) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐻) | ||
Theorem | mplcoe4 19551* | Decompose a polynomial into a finite sum of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = (𝑃 Σg (𝑘 ∈ 𝐷 ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, (𝑋‘𝑘), 0 ))))) | ||
Syntax | ces 19552 | Evaluation of a multivariate polynomial in a subring. |
class evalSub | ||
Syntax | cevl 19553 | Evaluation of a multivariate polynomial. |
class eval | ||
Definition | df-evls 19554* | Define the evaluation map for the polynomial algebra. The function ((𝐼 evalSub 𝑆)‘𝑅):𝑉⟶(𝑆 ↑𝑚 (𝑆 ↑𝑚 𝐼)) makes sense when 𝐼 is an index set, 𝑆 is a ring, 𝑅 is a subring of 𝑆, and where 𝑉 is the set of polynomials in (𝐼 mPoly 𝑅). This function maps an element of the formal polynomial algebra (with coefficients in 𝑅) to a function from assignments 𝐼⟶𝑆 of the variables to elements of 𝑆 formed by evaluating the polynomial with the given assignments. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑𝑚 𝑖) ↦ (𝑔‘𝑥))))))) | ||
Definition | df-evl 19555* | A simplification of evalSub when the evaluation ring is the same as the coefficient ring. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
⊢ eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟))) | ||
Theorem | evlslem4 19556* | The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 18-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑋 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) | ||
Theorem | psrbagfsupp 19557* | Finite bags have finite nonzero-support. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) |
⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ⇒ ⊢ ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) → 𝑋 finSupp 0) | ||
Theorem | psrbagev1 19558* | A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) |
⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = (.g‘𝑇) & ⊢ 0 = (0g‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ CMnd) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ (𝜑 → 𝐼 ∈ V) ⇒ ⊢ (𝜑 → ((𝐵 ∘𝑓 · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘𝑓 · 𝐺) finSupp 0 )) | ||
Theorem | psrbagev2 19559* | Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 18-Jul-2019.) |
⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = (.g‘𝑇) & ⊢ 0 = (0g‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ CMnd) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ (𝜑 → 𝐼 ∈ V) ⇒ ⊢ (𝜑 → (𝑇 Σg (𝐵 ∘𝑓 · 𝐺)) ∈ 𝐶) | ||
Theorem | evlslem2 19560* | A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ V) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐸 ∈ (𝑃 GrpHom 𝑆)) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷))) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘𝑓 + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = ((𝐸‘𝑥) · (𝐸‘𝑦))) | ||
Theorem | evlslem6 19561* | Lemma for evlseu 19564. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝑇 = (mulGrp‘𝑆) & ⊢ ↑ = (.g‘𝑇) & ⊢ · = (.r‘𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓 ↑ 𝐺)))))) & ⊢ (𝜑 → 𝐼 ∈ V) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓 ↑ 𝐺)))):𝐷⟶𝐶 ∧ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓 ↑ 𝐺)))) finSupp (0g‘𝑆))) | ||
Theorem | evlslem3 19562* | Lemma for evlseu 19564. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝑇 = (mulGrp‘𝑆) & ⊢ ↑ = (.g‘𝑇) & ⊢ · = (.r‘𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓 ↑ 𝐺)))))) & ⊢ (𝜑 → 𝐼 ∈ V) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐻 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐸‘(𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹‘𝐻) · (𝑇 Σg (𝐴 ∘𝑓 ↑ 𝐺)))) | ||
Theorem | evlslem1 19563* | Lemma for evlseu 19564, give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 26-Jul-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝑇 = (mulGrp‘𝑆) & ⊢ ↑ = (.g‘𝑇) & ⊢ · = (.r‘𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓 ↑ 𝐺)))))) & ⊢ (𝜑 → 𝐼 ∈ V) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸 ∘ 𝐴) = 𝐹 ∧ (𝐸 ∘ 𝑉) = 𝐺)) | ||
Theorem | evlseu 19564* | For a given interpretation of the variables 𝐺 and of the scalars 𝐹, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝐼 ∈ V) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚 ∘ 𝐴) = 𝐹 ∧ (𝑚 ∘ 𝑉) = 𝐺)) | ||
Theorem | reldmevls 19565 | Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
⊢ Rel dom evalSub | ||
Theorem | mpfrcl 19566 | Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) | ||
Theorem | evlsval 19567* | Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015.) (Revised by AV, 18-Sep-2021.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑𝑚 𝐼)) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝑋 = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑𝑚 𝐼) × {𝑥})) & ⊢ 𝑌 = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑥))) ⇒ ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (℩𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = 𝑌))) | ||
Theorem | evlsval2 19568* | Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Revised by AV, 18-Sep-2021.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑𝑚 𝐼)) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝑋 = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑𝑚 𝐼) × {𝑥})) & ⊢ 𝑌 = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑥))) ⇒ ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄 ∘ 𝐴) = 𝑋 ∧ (𝑄 ∘ 𝑉) = 𝑌))) | ||
Theorem | evlsrhm 19569 | Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Stefan O'Rear, 12-Mar-2015.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑𝑚 𝐼)) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) | ||
Theorem | evlssca 19570 | Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑𝑚 𝐼) × {𝑋})) | ||
Theorem | evlsvar 19571* | Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑋))) | ||
Theorem | evlval 19572 | Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑄 = (𝐼 eval 𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) | ||
Theorem | evlrhm 19573 | The simple evaluation map is a ring homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑄 = (𝐼 eval 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑅) & ⊢ 𝑇 = (𝑅 ↑s (𝐵 ↑𝑚 𝐼)) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑄 ∈ (𝑊 RingHom 𝑇)) | ||
Theorem | evlsscasrng 19574 | The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 12-Sep-2019.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑂 = (𝐼 eval 𝑆) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐶 = (algSc‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝑂‘(𝐶‘𝑋))) | ||
Theorem | evlsca 19575 | Simple polynomial evaluation maps scalars to constant functions. (Contributed by AV, 12-Sep-2019.) |
⊢ 𝑄 = (𝐼 eval 𝑆) & ⊢ 𝑊 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑𝑚 𝐼) × {𝑋})) | ||
Theorem | evlsvarsrng 19576 | The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑂 = (𝐼 eval 𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑂‘(𝑉‘𝑋))) | ||
Theorem | evlvar 19577* | Simple polynomial evaluation maps variables to projections. (Contributed by AV, 12-Sep-2019.) |
⊢ 𝑄 = (𝐼 eval 𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑋))) | ||
Theorem | mpfconst 19578 | Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → ((𝐵 ↑𝑚 𝐼) × {𝑋}) ∈ 𝑄) | ||
Theorem | mpfproj 19579* | Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑓‘𝐽)) ∈ 𝑄) | ||
Theorem | mpfsubrg 19580 | Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by AV, 19-Sep-2021.) |
⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)))) | ||
Theorem | mpff 19581 | Polynomial functions are functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ 𝑄 → 𝐹:(𝐵 ↑𝑚 𝐼)⟶𝐵) | ||
Theorem | mpfaddcl 19582 | The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ + = (+g‘𝑆) ⇒ ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘𝑓 + 𝐺) ∈ 𝑄) | ||
Theorem | mpfmulcl 19583 | The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ · = (.r‘𝑆) ⇒ ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘𝑓 · 𝐺) ∈ 𝑄) | ||
Theorem | mpfind 19584* | Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ · = (.r‘𝑆) & ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜁) & ⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜎) & ⊢ (𝑥 = ((𝐵 ↑𝑚 𝐼) × {𝑓}) → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = (𝑔 ∈ (𝐵 ↑𝑚 𝐼) ↦ (𝑔‘𝑓)) → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) & ⊢ (𝑥 = (𝑓 ∘𝑓 + 𝑔) → (𝜓 ↔ 𝜁)) & ⊢ (𝑥 = (𝑓 ∘𝑓 · 𝑔) → (𝜓 ↔ 𝜎)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑅) → 𝜒) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐼) → 𝜃) & ⊢ (𝜑 → 𝐴 ∈ 𝑄) ⇒ ⊢ (𝜑 → 𝜌) | ||
Remark: There are no theorems using these definitions yet! | ||
Syntax | cmhp 19585 | Multivariate polynomials. |
class mHomP | ||
Syntax | cpsd 19586 | Power series partial derivative function. |
class mPSDer | ||
Syntax | cslv 19587 | Select a subset of variables in a multivariate polynomial. |
class selectVars | ||
Syntax | cai 19588 | Algebraically independent. |
class AlgInd | ||
Definition | df-mhp 19589* | Define the subspaces of order- 𝑛 homogeneous polynomials. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ Σ𝑗 ∈ ℕ0 (𝑔‘𝑗) = 𝑛}})) | ||
Definition | df-psd 19590* | Define the differentiation operation on multivariate polynomials. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘𝑓 + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))) | ||
Definition | df-selv 19591* | Define the "variable selection" function. The function ((𝐼 selectVars 𝑅)‘𝐽) maps elements of (𝐼 mPoly 𝑅) bijectively onto (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) in the natural way, for example if 𝐼 = {𝑥, 𝑦} and 𝐽 = {𝑦} it would map 1 + 𝑥 + 𝑦 + 𝑥𝑦 ∈ ({𝑥, 𝑦} mPoly ℤ) to (1 + 𝑥) + (1 + 𝑥)𝑦 ∈ ({𝑦} mPoly ({𝑥} mPoly ℤ)). This, for example, allows one to treat a multivariate polynomial as a univariate polynomial with coefficients in a polynomial ring with one less variable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (𝑖 mPoly 𝑟) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑠⦌⦋(𝑥 ∈ (Scalar‘𝑠) ↦ (𝑥( ·𝑠 ‘𝑠)(1r‘𝑠))) / 𝑐⦌((((𝑖 evalSub 𝑠)‘(𝑐 “s 𝑟))‘(𝑐 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar ((𝑖 ∖ 𝑗) mPoly 𝑟))‘𝑥), (𝑐 ∘ (((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))))) | ||
Definition | df-algind 19592* | Define the predicate "the set 𝑣 is algebraically independent in the algebra 𝑤". A collection of vectors is algebraically independent if no nontrivial polynomial with elements from the subset evaluates to zero. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ AlgInd = (𝑤 ∈ V, 𝑘 ∈ 𝒫 (Base‘𝑤) ↦ {𝑣 ∈ 𝒫 (Base‘𝑤) ∣ Fun ◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))}) | ||
According to Wikipedia ("Polynomial", 23-Dec-2019, https://en.wikipedia.org/wiki/Polynomial) "A polynomial in one indeterminate is called a univariate polynomial, a polynomial in more than one indeterminate is called a multivariate polynomial." In this sense univariate polynomials are defined as multivariate polynomials restricted to one indeterminate/polynomial variable in the following, see ply1bascl2 19622. According to the definition in Wikipedia "a polynomial can either be zero or can be written as the sum of a finite number of nonzero terms. Each term consists of the product of a number - called the coefficient of the term - and a finite number of indeterminates, raised to nonnegative integer powers.". By this, a term of a univariate polynomial (often also called "polynomial term") is the product of a coefficient (usually a member of the underlying ring) and the variable, raised to a nonnegative integer power. A (univariate) polynomial which has only one term is called (univariate) monomial - therefore, the notions "term" and "monomial" are often used synonymously, see also the definition in [Lang] p. 102. Sometimes, however, a monomial is defined as power product, "a product of powers of variables with nonnegative integer exponents", see Wikipedia ("Monomial", 23-Dec-2019, https://en.wikipedia.org/wiki/Mononomial). In [Lang] p. 101, such terms are called "primitive monomials". To avoid any ambiguity, the notion "primitive monomial" is used for such power products ("x^i") in the following, whereas the synonym for "term" ("ai x^i") will be "scaled monomial". | ||
Syntax | cps1 19593 | Univariate power series. |
class PwSer1 | ||
Syntax | cv1 19594 | The base variable of a univariate power series. |
class var1 | ||
Syntax | cpl1 19595 | Univariate polynomials. |
class Poly1 | ||
Syntax | cco1 19596 | Coefficient function for a univariate polynomial. |
class coe1 | ||
Syntax | ctp1 19597 | Convert a univariate polynomial representation to multivariate. |
class toPoly1 | ||
Definition | df-psr1 19598 | Define the algebra of univariate power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
⊢ PwSer1 = (𝑟 ∈ V ↦ ((1𝑜 ordPwSer 𝑟)‘∅)) | ||
Definition | df-vr1 19599 | Define the base element of a univariate power series (the 𝑋 element of the set 𝑅[𝑋] of polynomials and also the 𝑋 in the set 𝑅[[𝑋]] of power series). (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ var1 = (𝑟 ∈ V ↦ ((1𝑜 mVar 𝑟)‘∅)) | ||
Definition | df-ply1 19600 | Define the algebra of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ Poly1 = (𝑟 ∈ V ↦ ((PwSer1‘𝑟) ↾s (Base‘(1𝑜 mPoly 𝑟)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |