HomeHome Metamath Proof Explorer
Theorem List (p. 193 of 429)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27903)
  Hilbert Space Explorer  Hilbert Space Explorer
(27904-29428)
  Users' Mathboxes  Users' Mathboxes
(29429-42879)
 

Theorem List for Metamath Proof Explorer - 19201-19300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlspprat 19201* A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if 𝑧 is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))       (𝜑 → ∃𝑧𝑉 𝑈 = (𝑁‘{𝑧}))
 
Theoremislbs2 19202* An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)       (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
 
Theoremislbs3 19203* An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)       (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))))
 
Theoremlbsacsbs 19204 Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 19202. (Contributed by David Moews, 1-May-2017.)
𝐴 = (LSubSp‘𝑊)    &   𝑁 = (mrCls‘𝐴)    &   𝑋 = (Base‘𝑊)    &   𝐼 = (mrInd‘𝐴)    &   𝐽 = (LBasis‘𝑊)       (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))
 
Theoremlvecdim 19205 The dimension theorem for vector spaces: any two bases of the same vector space are equinumerous. Proven by using lssacsex 19192 and lbsacsbs 19204 to show that being a basis for a vector space is equivalent to being a basis for the associated algebraic closure system, and then using acsexdimd 17230. (Contributed by David Moews, 1-May-2017.)
𝐽 = (LBasis‘𝑊)       ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑆𝑇)
 
Theoremlbsextlem1 19206* Lemma for lbsext 19211. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝐶𝑉)    &   (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))    &   𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}       (𝜑𝑆 ≠ ∅)
 
Theoremlbsextlem2 19207* Lemma for lbsext 19211. Since 𝐴 is a chain (actually, we only need it to be closed under binary union), the union 𝑇 of the spans of each individual element of 𝐴 is a subspace, and it contains all of 𝐴 (except for our target vector 𝑥- we are trying to make 𝑥 a linear combination of all the other vectors in some set from 𝐴). (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝐶𝑉)    &   (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))    &   𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}    &   𝑃 = (LSubSp‘𝑊)    &   (𝜑𝐴𝑆)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → [] Or 𝐴)    &   𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))       (𝜑 → (𝑇𝑃 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇))
 
Theoremlbsextlem3 19208* Lemma for lbsext 19211. A chain in 𝑆 has an upper bound in 𝑆. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝐶𝑉)    &   (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))    &   𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}    &   𝑃 = (LSubSp‘𝑊)    &   (𝜑𝐴𝑆)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → [] Or 𝐴)    &   𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))       (𝜑 𝐴𝑆)
 
Theoremlbsextlem4 19209* Lemma for lbsext 19211. lbsextlem3 19208 satisfies the conditions for the application of Zorn's lemma zorn 9367 (thus invoking AC), and so there is a maximal linearly independent set extending 𝐶. Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝐶𝑉)    &   (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))    &   𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}    &   (𝜑 → 𝒫 𝑉 ∈ dom card)       (𝜑 → ∃𝑠𝐽 𝐶𝑠)
 
Theoremlbsextg 19210* For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 17-May-2015.)
𝐽 = (LBasis‘𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)       (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
 
Theoremlbsext 19211* For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 17-May-2015.)
𝐽 = (LBasis‘𝑊)    &   𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LVec ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
 
Theoremlbsexg 19212 Every vector space has a basis. This theorem is an AC equivalent; this is the forward implication. (Contributed by Mario Carneiro, 17-May-2015.)
𝐽 = (LBasis‘𝑊)       ((CHOICE𝑊 ∈ LVec) → 𝐽 ≠ ∅)
 
Theoremlbsex 19213 Every vector space has a basis. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 25-Jun-2014.)
𝐽 = (LBasis‘𝑊)       (𝑊 ∈ LVec → 𝐽 ≠ ∅)
 
Theoremlvecprop2d 19214* If two structures have the same components (properties), one is a left vector space iff the other one is. This version of lvecpropd 19215 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   𝐹 = (Scalar‘𝐾)    &   𝐺 = (Scalar‘𝐿)    &   (𝜑𝑃 = (Base‘𝐹))    &   (𝜑𝑃 = (Base‘𝐺))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))       (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
 
Theoremlvecpropd 19215* If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   (𝜑𝐹 = (Scalar‘𝐾))    &   (𝜑𝐹 = (Scalar‘𝐿))    &   𝑃 = (Base‘𝐹)    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))       (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
 
10.8  Ideals
 
10.8.1  The subring algebra; ideals
 
Syntaxcsra 19216 Extend class notation with the subring algebra generator.
class subringAlg
 
Syntaxcrglmod 19217 Extend class notation with the left module induced by a ring over itself.
class ringLMod
 
Syntaxclidl 19218 Ring left-ideal function.
class LIdeal
 
Syntaxcrsp 19219 Ring span function.
class RSpan
 
Definitiondf-sra 19220* Given any subring of a ring, we can construct a left-algebra by regarding the elements of the subring as scalars and the ring itself as a set of vectors. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)))
 
Definitiondf-rgmod 19221 Every ring can be viewed as a left module over itself. (Contributed by Stefan O'Rear, 6-Dec-2014.)
ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤)))
 
Definitiondf-lidl 19222 Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015.)
LIdeal = (LSubSp ∘ ringLMod)
 
Definitiondf-rsp 19223 Define the linear span function in a ring (Ideal generator). (Contributed by Stefan O'Rear, 4-Apr-2015.)
RSpan = (LSpan ∘ ringLMod)
 
Theoremsraval 19224 Lemma for srabase 19226 through sravsca 19230. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
 
Theoremsralem 19225 Lemma for srabase 19226 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   (𝑁 < 5 ∨ 8 < 𝑁)       (𝜑 → (𝐸𝑊) = (𝐸𝐴))
 
Theoremsrabase 19226 Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (Base‘𝑊) = (Base‘𝐴))
 
Theoremsraaddg 19227 Additive operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (+g𝑊) = (+g𝐴))
 
Theoremsramulr 19228 Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (.r𝑊) = (.r𝐴))
 
Theoremsrasca 19229 The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
 
Theoremsravsca 19230 The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
 
Theoremsraip 19231 The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (.r𝑊) = (·𝑖𝐴))
 
Theoremsratset 19232 Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴))
 
Theoremsratopn 19233 Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (TopOpen‘𝑊) = (TopOpen‘𝐴))
 
Theoremsrads 19234 Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑 → (dist‘𝑊) = (dist‘𝐴))
 
Theoremsralmod 19235 The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝐴 = ((subringAlg ‘𝑊)‘𝑆)       (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
 
Theoremsralmod0 19236 The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑0 = (0g𝑊))    &   (𝜑𝑆 ⊆ (Base‘𝑊))       (𝜑0 = (0g𝐴))
 
Theoremissubrngd2 19237* Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
(𝜑𝑆 = (𝐼s 𝐷))    &   (𝜑0 = (0g𝐼))    &   (𝜑+ = (+g𝐼))    &   (𝜑𝐷 ⊆ (Base‘𝐼))    &   (𝜑0𝐷)    &   ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)    &   ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)    &   (𝜑1 = (1r𝐼))    &   (𝜑· = (.r𝐼))    &   (𝜑1𝐷)    &   ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 · 𝑦) ∈ 𝐷)    &   (𝜑𝐼 ∈ Ring)       (𝜑𝐷 ∈ (SubRing‘𝐼))
 
Theoremrlmfn 19238 ringLMod is a function. (Contributed by Stefan O'Rear, 6-Dec-2014.)
ringLMod Fn V
 
Theoremrlmval 19239 Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))
 
Theoremlidlval 19240 Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))
 
Theoremrspval 19241 Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.)
(RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))
 
Theoremrlmval2 19242 Value of the ring module extended. (Contributed by AV, 2-Dec-2018.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝑊𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
 
Theoremrlmbas 19243 Base set of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(Base‘𝑅) = (Base‘(ringLMod‘𝑅))
 
Theoremrlmplusg 19244 Vector addition in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(+g𝑅) = (+g‘(ringLMod‘𝑅))
 
Theoremrlm0 19245 Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
(0g𝑅) = (0g‘(ringLMod‘𝑅))
 
Theoremrlmsub 19246 Subtraction in the ring module. (Contributed by Thierry Arnoux, 30-Jun-2019.)
(-g𝑅) = (-g‘(ringLMod‘𝑅))
 
Theoremrlmmulr 19247 Ring multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(.r𝑅) = (.r‘(ringLMod‘𝑅))
 
Theoremrlmsca 19248 Scalars in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.)
(𝑅𝑋𝑅 = (Scalar‘(ringLMod‘𝑅)))
 
Theoremrlmsca2 19249 Scalars in the ring module. (Contributed by Stefan O'Rear, 1-Apr-2015.)
( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅))
 
Theoremrlmvsca 19250 Scalar multiplication in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
 
Theoremrlmtopn 19251 Topology component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅))
 
Theoremrlmds 19252 Metric component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(dist‘𝑅) = (dist‘(ringLMod‘𝑅))
 
Theoremrlmlmod 19253 The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014.)
(𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
 
Theoremrlmlvec 19254 The ring module over a division ring is a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝑅 ∈ DivRing → (ringLMod‘𝑅) ∈ LVec)
 
Theoremrlmvneg 19255 Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 5-Jun-2015.)
(invg𝑅) = (invg‘(ringLMod‘𝑅))
 
Theoremrlmscaf 19256 Functionalized scalar multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅))
 
Theoremixpsnbasval 19257* The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
 
Theoremlidlss 19258 An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐵 = (Base‘𝑊)    &   𝐼 = (LIdeal‘𝑊)       (𝑈𝐼𝑈𝐵)
 
Theoremislidl 19259* Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
 
Theoremlidl0cl 19260 An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
 
Theoremlidlacl 19261 An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    + = (+g𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 + 𝑌) ∈ 𝐼)
 
Theoremlidlnegcl 19262 An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → (𝑁𝑋) ∈ 𝐼)
 
Theoremlidlsubg 19263 An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (SubGrp‘𝑅))
 
Theoremlidlsubcl 19264 An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by OpenAI, 25-Mar-2020.)
𝑈 = (LIdeal‘𝑅)    &    = (-g𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 𝑌) ∈ 𝐼)
 
Theoremlidlmcl 19265 An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)
 
Theoremlidl1el 19266 An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ( 1𝐼𝐼 = 𝐵))
 
Theoremlidl0 19267 Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
 
Theoremlidl1 19268 Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝑈)
 
Theoremlidlacs 19269 The ideal system is an algebraic closure system on the base set. (Contributed by Stefan O'Rear, 4-Apr-2015.)
𝐵 = (Base‘𝑊)    &   𝐼 = (LIdeal‘𝑊)       (𝑊 ∈ Ring → 𝐼 ∈ (ACS‘𝐵))
 
Theoremrspcl 19270 The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾𝐺) ∈ 𝑈)
 
Theoremrspssid 19271 The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
 
Theoremrsp1 19272 The span of the identity element is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (𝐾‘{ 1 }) = 𝐵)
 
Theoremrsp0 19273 The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 })
 
Theoremrspssp 19274 The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐼) → (𝐾𝐺) ⊆ 𝐼)
 
Theoremmrcrsp 19275 Moore closure generalizes ideal span. (Contributed by Stefan O'Rear, 4-Apr-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝐾 = (RSpan‘𝑅)    &   𝐹 = (mrCls‘𝑈)       (𝑅 ∈ Ring → 𝐾 = 𝐹)
 
Theoremlidlnz 19276* A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑥𝐼 𝑥0 )
 
Theoremdrngnidl 19277 A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑈 = (LIdeal‘𝑅)       (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
 
Theoremlidlrsppropd 19278* The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐵𝑊)    &   ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
 
10.8.2  Two-sided ideals and quotient rings
 
Syntaxc2idl 19279 Ring two-sided ideal function.
class 2Ideal
 
Definitiondf-2idl 19280 Define the class of two-sided ideals of a ring. A two-sided ideal is a left ideal which is also a right ideal (or a left ideal over the opposite ring). (Contributed by Mario Carneiro, 14-Jun-2015.)
2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
 
Theorem2idlval 19281 Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)    &   𝐽 = (LIdeal‘𝑂)    &   𝑇 = (2Ideal‘𝑅)       𝑇 = (𝐼𝐽)
 
Theorem2idlcpbl 19282 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Base‘𝑅)    &   𝐸 = (𝑅 ~QG 𝑆)    &   𝐼 = (2Ideal‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
 
Theoremqus1 19283 The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r𝑈)))
 
Theoremqusring 19284 If 𝑆 is a two-sided ideal in 𝑅, then 𝑈 = 𝑅 / 𝑆 is a ring, called the quotient ring of 𝑅 by 𝑆. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
 
Theoremqusrhm 19285* If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)    &   𝑋 = (Base‘𝑅)    &   𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
 
Theoremcrngridl 19286 In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)       (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂))
 
Theoremcrng2idl 19287 In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)       (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅))
 
Theoremquscrng 19288 The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (LIdeal‘𝑅)       ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)
 
10.8.3  Principal ideal rings. Divisibility in the integers
 
Syntaxclpidl 19289 Ring left-principal-ideal function.
class LPIdeal
 
Syntaxclpir 19290 Class of left principal ideal rings.
class LPIR
 
Definitiondf-lpidl 19291* Define the class of left principal ideals of a ring, which are ideals with a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015.)
LPIdeal = (𝑤 ∈ Ring ↦ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})})
 
Definitiondf-lpir 19292 Define the class of left principal ideal rings, rings where every left ideal has a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015.)
LPIR = {𝑤 ∈ Ring ∣ (LIdeal‘𝑤) = (LPIdeal‘𝑤)}
 
Theoremlpival 19293* Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑃 = (LPIdeal‘𝑅)    &   𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
 
Theoremislpidl 19294* Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑃 = (LPIdeal‘𝑅)    &   𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → (𝐼𝑃 ↔ ∃𝑔𝐵 𝐼 = (𝐾‘{𝑔})))
 
Theoremlpi0 19295 The zero ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑃 = (LPIdeal‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝑃)
 
Theoremlpi1 19296 The unit ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑃 = (LPIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝑃)
 
Theoremislpir 19297 Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑃 = (LPIdeal‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃))
 
Theoremlpiss 19298 Principal ideals are a subclass of ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑃 = (LPIdeal‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       (𝑅 ∈ Ring → 𝑃𝑈)
 
Theoremislpir2 19299 Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑃 = (LPIdeal‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈𝑃))
 
Theoremlpirring 19300 Principal ideal rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015.)
(𝑅 ∈ LPIR → 𝑅 ∈ Ring)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
  Copyright terms: Public domain < Previous  Next >