![]() |
Metamath
Proof Explorer Theorem List (p. 188 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dvdsr01 18701 | In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg 19331.) (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 0 ) | ||
Theorem | dvdsr02 18702 | Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 ∥ 𝑋 ↔ 𝑋 = 0 )) | ||
Theorem | isunit 18703 | Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝐸 = (∥r‘𝑆) ⇒ ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 )) | ||
Theorem | 1unit 18704 | The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) | ||
Theorem | unitcl 18705 | A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) | ||
Theorem | unitss 18706 | The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ 𝑈 ⊆ 𝐵 | ||
Theorem | opprunit 18707 | Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑆 = (oppr‘𝑅) ⇒ ⊢ 𝑈 = (Unit‘𝑆) | ||
Theorem | crngunit 18708 | Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) | ||
Theorem | dvdsunit 18709 | A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ 𝑈) | ||
Theorem | unitmulcl 18710 | The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈) | ||
Theorem | unitmulclb 18711 | Reversal of unitmulcl 18710 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) | ||
Theorem | unitgrpbas 18712 | The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ 𝑈 = (Base‘𝐺) | ||
Theorem | unitgrp 18713 | The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) | ||
Theorem | unitabl 18714 | The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Abel) | ||
Theorem | unitgrpid 18715 | The identity of the multiplicative group is 1r. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 = (0g‘𝐺)) | ||
Theorem | unitsubm 18716 | The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) | ||
Syntax | cinvr 18717 | Extend class notation with multiplicative inverse. |
class invr | ||
Definition | df-invr 18718 | Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.) |
⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | ||
Theorem | invrfval 18719 | Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ 𝐼 = (invg‘𝐺) | ||
Theorem | unitinvcl 18720 | The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) | ||
Theorem | unitinvinv 18721 | The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘(𝐼‘𝑋)) = 𝑋) | ||
Theorem | ringinvcl 18722 | The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝐵) | ||
Theorem | unitlinv 18723 | A unit times its inverse is the identity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = 1 ) | ||
Theorem | unitrinv 18724 | A unit times its inverse is the identity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 · (𝐼‘𝑋)) = 1 ) | ||
Theorem | 1rinv 18725 | The inverse of the identity is the identity. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝐼 = (invr‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼‘ 1 ) = 1 ) | ||
Theorem | 0unit 18726 | The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 )) | ||
Theorem | unitnegcl 18727 | The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) | ||
Syntax | cdvr 18728 | Extend class notation with ring division. |
class /r | ||
Definition | df-dvr 18729* | Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | ||
Theorem | dvrfval 18730* | Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) | ||
Theorem | dvrval 18731 | Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) | ||
Theorem | dvrcl 18732 | Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝐵) | ||
Theorem | unitdvcl 18733 | The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) | ||
Theorem | dvrid 18734 | A cancellation law for division. (divid 10752 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 / 𝑋) = 1 ) | ||
Theorem | dvr1 18735 | A cancellation law for division. (div1 10754 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 / 1 ) = 𝑋) | ||
Theorem | dvrass 18736 | An associative law for division. (divass 10741 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍))) | ||
Theorem | dvrcan1 18737 | A cancellation law for division. (divcan1 10732 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) | ||
Theorem | dvrcan3 18738 | A cancellation law for division. (divcan3 10749 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋) | ||
Theorem | dvreq1 18739 | A cancellation law for division. (diveq1 10756 analog.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) | ||
Theorem | ringinvdv 18740 | Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = ( 1 / 𝑋)) | ||
Theorem | rngidpropd 18741* | The ring identity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) | ||
Theorem | dvdsrpropd 18742* | The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) | ||
Theorem | unitpropd 18743* | The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) | ||
Theorem | invrpropd 18744* | The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (invr‘𝐾) = (invr‘𝐿)) | ||
Theorem | isirred 18745* | An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (𝐵 ∖ 𝑈) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) | ||
Theorem | isnirred 18746* | The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (𝐵 ∖ 𝑈) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) | ||
Theorem | isirred2 18747* | Expand out the class difference from isirred 18745. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) | ||
Theorem | opprirred 18748 | Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) ⇒ ⊢ 𝐼 = (Irred‘𝑆) | ||
Theorem | irredn0 18749 | The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) | ||
Theorem | irredcl 18750 | An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ 𝐵) | ||
Theorem | irrednu 18751 | An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈) | ||
Theorem | irredn1 18752 | The multiplicative identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 1 ) | ||
Theorem | irredrmul 18753 | The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝐼) | ||
Theorem | irredlmul 18754 | The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝐼) → (𝑋 · 𝑌) ∈ 𝐼) | ||
Theorem | irredmul 18755 | If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) | ||
Theorem | irredneg 18756 | The negative of an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) | ||
Theorem | irrednegb 18757 | An element is irreducible iff its negative is. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐼 = (Irred‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝐼 ↔ (𝑁‘𝑋) ∈ 𝐼)) | ||
Syntax | crpm 18758 | Syntax for the ring primes function. |
class RPrime | ||
Definition | df-rprm 18759* | Define the function associating with a ring its set of prime elements. A prime element is a nonzero non-unit that satisfies an equivalent of Euclid's lemma euclemma 15472. Prime elements are closely related to irreducible elements ( see df-irred 18689). (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ RPrime = (𝑤 ∈ V ↦ ⦋(Base‘𝑤) / 𝑏⦌{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g‘𝑤)})) ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 [(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦))}) | ||
Syntax | crh 18760 | Extend class notation with the ring homomorphisms. |
class RingHom | ||
Syntax | crs 18761 | Extend class notation with the ring isomorphisms. |
class RingIso | ||
Syntax | cric 18762 | Extend class notation with the ring isomorphism relation. |
class ≃𝑟 | ||
Definition | df-rnghom 18763* | Define the set of ring homomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) | ||
Definition | df-rngiso 18764* | Define the set of ring isomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) | ||
Theorem | dfrhm2 18765* | The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | ||
Definition | df-ric 18766 | Define the ring isomorphism relation, analogous to df-gic 17749: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.) |
⊢ ≃𝑟 = (◡ RingIso “ (V ∖ 1𝑜)) | ||
Theorem | rhmrcl1 18767 | Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | ||
Theorem | rhmrcl2 18768 | Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | ||
Theorem | isrhm 18769 | A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) | ||
Theorem | rhmmhm 18770 | A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | ||
Theorem | isrim0 18771 | An isomorphism of rings is a homomorphism whose converse is also a homomorphism . (Contributed by AV, 22-Oct-2019.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)))) | ||
Theorem | rimrcl 18772 | Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019.) |
⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | ||
Theorem | rhmghm 18773 | A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
Theorem | rhmf 18774 | A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) | ||
Theorem | rhmmul 18775 | A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) | ||
Theorem | isrhm2d 18776* | Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
Theorem | isrhmd 18777* | Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ⨣ = (+g‘𝑆) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
Theorem | rhm1 18778 | Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 1 ) = 𝑁) | ||
Theorem | idrhm 18779 | The identity homomorphism on a ring. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ( I ↾ 𝐵) ∈ (𝑅 RingHom 𝑅)) | ||
Theorem | rhmf1o 18780 | A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | ||
Theorem | isrim 18781 | An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶))) | ||
Theorem | rimf1o 18782 | An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
Theorem | rimrhm 18783 | An isomorphism of rings is a homomorphism. (Contributed by AV, 22-Oct-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
Theorem | rimgim 18784 | An isomorphism of rings is an isomorphism of their additive groups. (Contributed by AV, 24-Dec-2019.) |
⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) | ||
Theorem | rhmco 18785 | The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) | ||
Theorem | pwsco1rhm 18786* | Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐴) & ⊢ 𝑍 = (𝑅 ↑s 𝐵) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 RingHom 𝑌)) | ||
Theorem | pwsco2rhm 18787* | Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐴) & ⊢ 𝑍 = (𝑆 ↑s 𝐴) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) ⇒ ⊢ (𝜑 → (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) ∈ (𝑌 RingHom 𝑍)) | ||
Theorem | f1rhm0to0 18788 | If a ring homomorphism 𝐹 is injective, it maps the zero of one ring (and only the zero) to the zero of the other ring. (Contributed by AV, 24-Oct-2019.) |
⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) | ||
Theorem | f1rhm0to0ALT 18789 | Alternate proof for f1rhm0to0 18788. Using ghmf1 17736 does not make the proof shorter and requires disjoint variable restrictions! (Contributed by AV, 24-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) | ||
Theorem | rim0to0 18790 | A ring isomorphism maps the zero of one ring (and only the zero) to the zero of the other ring. (Contributed by AV, 24-Oct-2019.) |
⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) | ||
Theorem | kerf1hrm 18791 | A ring homomorphism 𝐹 is injective if and only if its kernel is the singleton {𝑁}. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) |
⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ (◡𝐹 “ { 0 }) = {𝑁})) | ||
Theorem | brric 18792 | The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.) |
⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) | ||
Theorem | brric2 18793* | The relation "is isomorphic to" for (unital) rings. This theorem corresponds to the definition df-risc 33912 of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019.) |
⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))) | ||
Theorem | ricgic 18794 | If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019.) |
⊢ (𝑅 ≃𝑟 𝑆 → 𝑅 ≃𝑔 𝑆) | ||
Syntax | cdr 18795 | Extend class notation with class of all division rings. |
class DivRing | ||
Syntax | cfield 18796 | Class of fields. |
class Field | ||
Definition | df-drng 18797 | Define class of all division rings. A division ring is a ring in which the set of units is exactly the nonzero elements of the ring. (Contributed by NM, 18-Oct-2012.) |
⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g‘𝑟)})} | ||
Definition | df-field 18798 | A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
⊢ Field = (DivRing ∩ CRing) | ||
Theorem | isdrng 18799 | The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))) | ||
Theorem | drngunit 18800 | Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |