![]() |
Metamath
Proof Explorer Theorem List (p. 185 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | gsumzunsnd 18401* | Append an element to a finite group sum, more general version of gsumunsnd 18403. (Contributed by AV, 7-Oct-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) | ||
Theorem | gsumunsnfd 18402* | Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 11-Dec-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) & ⊢ Ⅎ𝑘𝑌 ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) | ||
Theorem | gsumunsnd 18403* | Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 2-Jan-2019.) (Proof shortened by AV, 11-Dec-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) | ||
Theorem | gsumunsnf 18404* | Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝑌 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝑘 = 𝑀 → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) | ||
Theorem | gsumunsn 18405* | Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014.) (Proof shortened by AV, 8-Mar-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝑘 = 𝑀 → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) | ||
Theorem | gsumdifsnd 18406* | Extract a summand from a finitely supported group sum. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) | ||
Theorem | gsumpt 18407 | Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋}) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐹‘𝑋)) | ||
Theorem | gsummptf1o 18408* | Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018.) |
⊢ Ⅎ𝑥𝐻 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) | ||
Theorem | gsummptun 18409* | Group sum of a disjoint union, whereas sums are expressed as mappings. (Contributed by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ (𝜑 → (𝐴 ∪ 𝐶) ∈ Fin) & ⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐶)) → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ (𝐴 ∪ 𝐶) ↦ 𝐷)) = ((𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐷)) + (𝑊 Σg (𝑥 ∈ 𝐶 ↦ 𝐷)))) | ||
Theorem | gsummpt1n0 18410* | If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 18411. (Contributed by AV, 11-Oct-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) & ⊢ (𝜑 → ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = ⦋𝑋 / 𝑛⦌𝐴) | ||
Theorem | gsummptif1n0 18411* | If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019.) (Proof shortened by AV, 11-Oct-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) & ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = 𝐴) | ||
Theorem | gsummptcl 18412* | Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝑁 ↦ 𝑋)) ∈ 𝐵) | ||
Theorem | gsummptfif1o 18413* | Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → ∀𝑖 ∈ 𝑁 𝑋 ∈ 𝐵) & ⊢ 𝐹 = (𝑖 ∈ 𝑁 ↦ 𝑋) & ⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝑁) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) | ||
Theorem | gsummptfzcl 18414* | Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐼 = (𝑀...𝑁)) & ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) ∈ 𝐵) | ||
Theorem | gsum2dlem1 18415* | Lemma 1 for gsum2d 18417. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) | ||
Theorem | gsum2dlem2 18416* | Lemma for gsum2d 18417. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) | ||
Theorem | gsum2d 18417* | Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐷 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) | ||
Theorem | gsum2d2lem 18418* | Lemma for gsum2d2 18419: show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) ⇒ ⊢ (𝜑 → (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) finSupp 0 ) | ||
Theorem | gsum2d2 18419* | Write a group sum over a two-dimensional region as a double sum. (Note that 𝐶(𝑗) is a function of 𝑗.) (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋))))) | ||
Theorem | gsumcom2 18420* | Two-dimensional commutation of a group sum. Note that while 𝐴 and 𝐷 are constants w.r.t. 𝑗, 𝑘, 𝐶(𝑗) and 𝐸(𝑘) are not. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ↔ (𝑘 ∈ 𝐷 ∧ 𝑗 ∈ 𝐸))) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝐷, 𝑗 ∈ 𝐸 ↦ 𝑋))) | ||
Theorem | gsumxp 18421* | Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) | ||
Theorem | gsumcom 18422* | Commute the arguments of a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝐶, 𝑗 ∈ 𝐴 ↦ 𝑋))) | ||
Theorem | prdsgsum 18423* | Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑌) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ CMnd) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | ||
Theorem | pwsgsum 18424* | Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑌) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CMnd) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | ||
Theorem | fsfnn0gsumfsffz 18425* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑𝑚 ℕ0)) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ 𝐻 = (𝐹 ↾ (0...𝑆)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) | ||
Theorem | nn0gsumfz 18426* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑𝑚 ℕ0)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∃𝑓 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹‘𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) | ||
Theorem | nn0gsumfz0 18427* | Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑𝑚 ℕ0)) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∃𝑓 ∈ (𝐵 ↑𝑚 (0...𝑠))(𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) | ||
Theorem | gsummptnn0fz 18428* | A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))) | ||
Theorem | gsummptnn0fzv 18429* | A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))) | ||
Theorem | gsummptnn0fzfv 18430* | A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑𝑚 ℕ0)) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹‘𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹‘𝑘)))) | ||
Theorem | telgsumfzslem 18431* | Lemma for telgsumfzs 18432 (induction step). (Contributed by AV, 23-Nov-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝑦 ∈ (ℤ≥‘𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶 ∈ 𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋𝑀 / 𝑘⦌𝐶 − ⦋(𝑦 + 1) / 𝑘⦌𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋𝑀 / 𝑘⦌𝐶 − ⦋((𝑦 + 1) + 1) / 𝑘⦌𝐶))) | ||
Theorem | telgsumfzs 18432* | Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋𝑀 / 𝑘⦌𝐶 − ⦋(𝑁 + 1) / 𝑘⦌𝐶)) | ||
Theorem | telgsumfz 18433* | Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum 14580. (Contributed by AV, 23-Nov-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 ∈ 𝐵) & ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐿) & ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶))) = (𝐷 − 𝐸)) | ||
Theorem | telgsumfz0s 18434* | Telescoping finite group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) (Proof shortened by AV, 25-Nov-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋0 / 𝑘⦌𝐶 − ⦋(𝑆 + 1) / 𝑘⦌𝐶)) | ||
Theorem | telgsumfz0 18435* | Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum 14580. (Contributed by AV, 23-Nov-2019.) |
⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐴 ∈ 𝐾) & ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) & ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) & ⊢ (𝑘 = 0 → 𝐴 = 𝐷) & ⊢ (𝑘 = (𝑆 + 1) → 𝐴 = 𝐸) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝐵 − 𝐶))) = (𝐷 − 𝐸)) | ||
Theorem | telgsums 18436* | Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = ⦋0 / 𝑘⦌𝐶) | ||
Theorem | telgsum 18437* | Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ − = (-g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐴 = 0 )) & ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐶) & ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐷) & ⊢ (𝑘 = 0 → 𝐴 = 𝐸) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝐶 − 𝐷))) = 𝐸) | ||
Syntax | cdprd 18438 | Internal direct product of a family of subgroups. |
class DProd | ||
Syntax | cdpj 18439 | Projection operator for a direct product. |
class dProj | ||
Definition | df-dprd 18440* | Define the internal direct product of a family of subgroups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ “ (dom ℎ ∖ {𝑥})))) = {(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) | ||
Definition | df-dpj 18441* | Define the projection operator for a direct product. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠‘𝑖)(proj1‘𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))))) | ||
Theorem | reldmdprd 18442 | The domain of the internal direct product operation is a relation. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
⊢ Rel dom DProd | ||
Theorem | dmdprd 18443* | The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Proof shortened by AV, 11-Jul-2019.) |
⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) | ||
Theorem | dmdprdd 18444* | Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
Theorem | dprddomprc 18445 | A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.) |
⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) | ||
Theorem | dprddomcld 18446 | If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) ⇒ ⊢ (𝜑 → 𝐼 ∈ V) | ||
Theorem | dprdval0prc 18447 | The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.) |
⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) | ||
Theorem | dprdval 18448* | The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ⇒ ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓 ∈ 𝑊 ↦ (𝐺 Σg 𝑓))) | ||
Theorem | eldprd 18449* | A class 𝐴 is an internal direct product iff it is the (group) sum of an infinite, but finitely supported cartesian product of subgroups (which mutually commute and have trivial intersections). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ⇒ ⊢ (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) | ||
Theorem | dprdgrp 18450 | Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | ||
Theorem | dprdf 18451 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) | ||
Theorem | dprdf2 18452 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) ⇒ ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | ||
Theorem | dprdcntz 18453 | The function 𝑆 is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))) | ||
Theorem | dprddisj 18454 | The function 𝑆 is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }) | ||
Theorem | dprdw 18455* | The property of being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ 𝐹 finSupp 0 ))) | ||
Theorem | dprdwd 18456* | A mapping being a finitely supported function in the family 𝑆. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) (Proof shortened by OpenAI, 30-Mar-2020.) |
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝑆‘𝑥)) & ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐴) ∈ 𝑊) | ||
Theorem | dprdff 18457* | A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | ||
Theorem | dprdfcl 18458* | A finitely supported function in 𝑆 has its 𝑋-th element in 𝑆(𝑋). (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐼) → (𝐹‘𝑋) ∈ (𝑆‘𝑋)) | ||
Theorem | dprdffsupp 18459* | A finitely supported function in 𝑆 is a finitely supported function. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 finSupp 0 ) | ||
Theorem | dprdfcntz 18460* | A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.) |
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | ||
Theorem | dprdssv 18461 | The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 DProd 𝑆) ⊆ 𝐵 | ||
Theorem | dprdfid 18462* | A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) & ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑊 ∧ (𝐺 Σg 𝐹) = 𝐴)) | ||
Theorem | eldprdi 18463* | The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) | ||
Theorem | dprdfinv 18464* | Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝜑 → ((𝑁 ∘ 𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁 ∘ 𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))) | ||
Theorem | dprdfadd 18465* | Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑓 + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) | ||
Theorem | dprdfsub 18466* | Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑓 − 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘𝑓 − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)))) | ||
Theorem | dprdfeq0 18467* | The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐺 Σg 𝐹) = 0 ↔ 𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ))) | ||
Theorem | dprdf11 18468* | Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) | ||
Theorem | dprdsubg 18469 | The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) | ||
Theorem | dprdub 18470 | Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) | ||
Theorem | dprdlub 18471* | The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ 𝑇) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝑇) | ||
Theorem | dprdspan 18472 | The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) | ||
Theorem | dprdres 18473 | Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐴 ⊆ 𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ (𝐺 DProd (𝑆 ↾ 𝐴)) ⊆ (𝐺 DProd 𝑆))) | ||
Theorem | dprdss 18474* | Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑇) & ⊢ (𝜑 → dom 𝑇 = 𝐼) & ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ (𝑇‘𝑘)) ⇒ ⊢ (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇))) | ||
Theorem | dprdz 18475* | A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → (𝐺dom DProd (𝑥 ∈ 𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 })) = { 0 })) | ||
Theorem | dprd0 18476 | The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) | ||
Theorem | dprdf1o 18477 | Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹:𝐽–1-1-onto→𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd 𝑆))) | ||
Theorem | dprdf1 18478 | Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) | ||
Theorem | subgdmdprd 18479 | A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))) | ||
Theorem | subgdprd 18480 | A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴) ⇒ ⊢ (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆)) | ||
Theorem | dprdsn 18481 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {〈𝐴, 𝑆〉} ∧ (𝐺 DProd {〈𝐴, 𝑆〉}) = 𝑆)) | ||
Theorem | dmdprdsplitlem 18482* | Lemma for dmdprdsplit 18492. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } & ⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐴 ⊆ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) → (𝐹‘𝑋) = 0 ) | ||
Theorem | dprdcntz2 18483 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) & ⊢ (𝜑 → 𝐷 ⊆ 𝐼) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | ||
Theorem | dprddisj2 18484 | The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) & ⊢ (𝜑 → 𝐷 ⊆ 𝐼) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | ||
Theorem | dprd2dlem2 18485* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st ‘𝑋)}) ↦ ((1st ‘𝑋)𝑆𝑗)))) | ||
Theorem | dprd2dlem1 18486* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐼) ⇒ ⊢ (𝜑 → (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐶))) = (𝐺 DProd (𝑖 ∈ 𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) | ||
Theorem | dprd2da 18487* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
Theorem | dprd2db 18488* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) | ||
Theorem | dprd2d2 18489* | The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ 𝐽 ↦ 𝑆)) & ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))) ⇒ ⊢ (𝜑 → (𝐺dom DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆) ∧ (𝐺 DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))))) | ||
Theorem | dmdprdsplit2lem 18490 | Lemma for dmdprdsplit 18492. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) & ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) & ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑌 ∈ 𝐼 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌)))) ∧ ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 })) | ||
Theorem | dmdprdsplit2 18491 | The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) & ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) & ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) & ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) ⇒ ⊢ (𝜑 → 𝐺dom DProd 𝑆) | ||
Theorem | dmdprdsplit 18492 | The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }))) | ||
Theorem | dprdsplit 18493 | The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝐺dom DProd 𝑆) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝐺 DProd (𝑆 ↾ 𝐶)) ⊕ (𝐺 DProd (𝑆 ↾ 𝐷)))) | ||
Theorem | dmdprdpr 18494 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺dom DProd ◡({𝑆} +𝑐 {𝑇}) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ (𝑆 ∩ 𝑇) = { 0 }))) | ||
Theorem | dprdpr 18495 | A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) & ⊢ ⊕ = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = { 0 }) ⇒ ⊢ (𝜑 → (𝐺 DProd ◡({𝑆} +𝑐 {𝑇})) = (𝑆 ⊕ 𝑇)) | ||
Theorem | dpjlem 18496 | Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) | ||
Theorem | dpjcntz 18497 | The two subgroups that appear in dpjval 18501 commute. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) | ||
Theorem | dpjdisj 18498 | The two subgroups that appear in dpjval 18501 are disjoint. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) | ||
Theorem | dpjlsm 18499 | The two subgroups that appear in dpjval 18501 add to the full direct product. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ ⊕ = (LSSum‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝑆‘𝑋) ⊕ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) | ||
Theorem | dpjfval 18500* | Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ (𝜑 → 𝐺dom DProd 𝑆) & ⊢ (𝜑 → dom 𝑆 = 𝐼) & ⊢ 𝑃 = (𝐺dProj𝑆) & ⊢ 𝑄 = (proj1‘𝐺) ⇒ ⊢ (𝜑 → 𝑃 = (𝑖 ∈ 𝐼 ↦ ((𝑆‘𝑖)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑖})))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |