![]() |
Metamath
Proof Explorer Theorem List (p. 164 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mre1cl 16301 | In any Moore collection the base set is closed. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | ||
Theorem | mreintcl 16302 | A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) | ||
Theorem | mreiincl 16303* | A nonempty indexed intersection of closed sets is closed. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | ||
Theorem | mrerintcl 16304 | The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑆) ∈ 𝐶) | ||
Theorem | mreriincl 16305* | The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) | ||
Theorem | mreincl 16306 | Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) | ||
Theorem | mreuni 16307 | Since the entire base set of a Moore collection is the greatest element of it, the base set can be recovered from a Moore collection by set union. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) | ||
Theorem | mreunirn 16308 | Two ways to express the notion of being a Moore collection on an unspecified base. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ (𝐶 ∈ ∪ ran Moore ↔ 𝐶 ∈ (Moore‘∪ 𝐶)) | ||
Theorem | ismred 16309* | Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) | ||
Theorem | ismred2 16310* | Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) & ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑋 ∩ ∩ 𝑠) ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) | ||
Theorem | mremre 16311 | The Moore collections of subsets of a space, viewed as a kind of subset of the power set, form a Moore collection in their own right on the power set. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ (𝑋 ∈ 𝑉 → (Moore‘𝑋) ∈ (Moore‘𝒫 𝑋)) | ||
Theorem | submre 16312 | The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴 ∈ 𝐶) → (𝐶 ∩ 𝒫 𝐴) ∈ (Moore‘𝐴)) | ||
Theorem | mrcflem 16313* | The domain and range of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}):𝒫 𝑋⟶𝐶) | ||
Theorem | fnmrc 16314 | Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ mrCls Fn ∪ ran Moore | ||
Theorem | mrcfval 16315* | Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) | ||
Theorem | mrcf 16316 | The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) | ||
Theorem | mrcval 16317* | Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) | ||
Theorem | mrccl 16318 | The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) ∈ 𝐶) | ||
Theorem | mrcsncl 16319 | The Moore closure of a singleton is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) | ||
Theorem | mrcid 16320 | The closure of a closed set is itself. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → (𝐹‘𝑈) = 𝑈) | ||
Theorem | mrcssv 16321 | The closure of a set is a subset of the base. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑈) ⊆ 𝑋) | ||
Theorem | mrcidb 16322 | A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) | ||
Theorem | mrcss 16323 | Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘𝑈) ⊆ (𝐹‘𝑉)) | ||
Theorem | mrcssid 16324 | The closure of a set is a superset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ⊆ (𝐹‘𝑈)) | ||
Theorem | mrcidb2 16325 | A set is closed iff it contains its closure. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) ⊆ 𝑈)) | ||
Theorem | mrcidm 16326 | The closure operation is idempotent. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘(𝐹‘𝑈)) = (𝐹‘𝑈)) | ||
Theorem | mrcsscl 16327 | The closure is the minimal closed set; any closed set which contains the generators is a superset of the closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶) → (𝐹‘𝑈) ⊆ 𝑉) | ||
Theorem | mrcuni 16328 | Idempotence of closure under a general union. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ 𝑈) = (𝐹‘∪ (𝐹 “ 𝑈))) | ||
Theorem | mrcun 16329 | Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋) → (𝐹‘(𝑈 ∪ 𝑉)) = (𝐹‘((𝐹‘𝑈) ∪ (𝐹‘𝑉)))) | ||
Theorem | mrcssvd 16330 | The Moore closure of a set is a subset of the base. Deduction form of mrcssv 16321. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) ⇒ ⊢ (𝜑 → (𝑁‘𝐵) ⊆ 𝑋) | ||
Theorem | mrcssd 16331 | Moore closure preserves subset ordering. Deduction form of mrcss 16323. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉) & ⊢ (𝜑 → 𝑉 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) | ||
Theorem | mrcssidd 16332 | A set is contained in its Moore closure. Deduction form of mrcssid 16324. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑈 ⊆ 𝑋) ⇒ ⊢ (𝜑 → 𝑈 ⊆ (𝑁‘𝑈)) | ||
Theorem | mrcidmd 16333 | Moore closure is idempotent. Deduction form of mrcidm 16326. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑈 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑁‘(𝑁‘𝑈)) = (𝑁‘𝑈)) | ||
Theorem | mressmrcd 16334 | In a Moore system, if a set is between another set and its closure, the two sets have the same closure. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | ||
Theorem | submrc 16335 | In a closure system which is cut off above some level, closures below that level act as normal. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) & ⊢ 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷)) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷 ∈ 𝐶 ∧ 𝑈 ⊆ 𝐷) → (𝐺‘𝑈) = (𝐹‘𝑈)) | ||
Theorem | mrieqvlemd 16336 | In a Moore system, if 𝑌 is a member of 𝑆, (𝑆 ∖ {𝑌}) and 𝑆 have the same closure if and only if 𝑌 is in the closure of (𝑆 ∖ {𝑌}). Used in the proof of mrieqvd 16345 and mrieqv2d 16346. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆))) | ||
Theorem | mrisval 16337* | Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) ⇒ ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))}) | ||
Theorem | ismri 16338* | Criterion for a set to be an independent set of a Moore system. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) ⇒ ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) | ||
Theorem | ismri2 16339* | Criterion for a subset of the base set in a Moore system to be independent. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) ⇒ ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) | ||
Theorem | ismri2d 16340* | Criterion for a subset of the base set in a Moore system to be independent. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) | ||
Theorem | ismri2dd 16341* | Definition of independence of a subset of the base set in a Moore system. One-way deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ⇒ ⊢ (𝜑 → 𝑆 ∈ 𝐼) | ||
Theorem | mriss 16342 | An independent set of a Moore system is a subset of the base set. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝐼 = (mrInd‘𝐴) ⇒ ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐼) → 𝑆 ⊆ 𝑋) | ||
Theorem | mrissd 16343 | An independent set of a Moore system is a subset of the base set. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | ||
Theorem | ismri2dad 16344 | Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) | ||
Theorem | mrieqvd 16345* | In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁‘𝑆))) | ||
Theorem | mrieqv2d 16346* | In a Moore system, a set is independent if and only if all its proper subsets have closure properly contained in the closure of the set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)))) | ||
Theorem | mrissmrcd 16347 | In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd 16334, and so are equal by mrieqv2d 16346.) (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝑆 = 𝑇) | ||
Theorem | mrissmrid 16348 | In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) ⇒ ⊢ (𝜑 → 𝑇 ∈ 𝐼) | ||
Theorem | mreexd 16349* | In a Moore system, the closure operator is said to have the exchange property if, for all elements 𝑦 and 𝑧 of the base set and subsets 𝑆 of the base set such that 𝑧 is in the closure of (𝑆 ∪ {𝑦}) but not in the closure of 𝑆, 𝑦 is in the closure of (𝑆 ∪ {𝑧}) (Definition 3.1.9 in [FaureFrolicher] p. 57 to 58.) This theorem allows us to construct substitution instances of this definition. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝑍 ∈ (𝑁‘(𝑆 ∪ {𝑌}))) & ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘𝑆)) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍}))) | ||
Theorem | mreexmrid 16350* | In a Moore system whose closure operator has the exchange property, if a set is independent and an element is not in its closure, then adding the element to the set gives another independent set. Lemma 4.1.5 in [FaureFrolicher] p. 84. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘𝑆)) ⇒ ⊢ (𝜑 → (𝑆 ∪ {𝑌}) ∈ 𝐼) | ||
Theorem | mreexexlemd 16351* | This lemma is used to generate substitution instances of the induction hypothesis in mreexexd 16355. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → (𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾)) & ⊢ (𝜑 → ∀𝑡∀𝑢 ∈ 𝒫 (𝑋 ∖ 𝑡)∀𝑣 ∈ 𝒫 (𝑋 ∖ 𝑡)(((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼))) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) | ||
Theorem | mreexexlem2d 16352* | Used in mreexexlem4d 16354 to prove the induction step in mreexexd 16355. See the proof of Proposition 4.2.1 in [FaureFrolicher] p. 86 to 87. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐹) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)) | ||
Theorem | mreexexlem3d 16353* | Base case of the induction in mreexexd 16355. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → (𝐹 = ∅ ∨ 𝐺 = ∅)) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ 𝒫 𝐺(𝐹 ≈ 𝑖 ∧ (𝑖 ∪ 𝐻) ∈ 𝐼)) | ||
Theorem | mreexexlem4d 16354* | Induction step of the induction in mreexexd 16355. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → 𝐿 ∈ ω) & ⊢ (𝜑 → ∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) & ⊢ (𝜑 → (𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿)) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) | ||
Theorem | mreexexd 16355* | Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if 𝐹 and 𝐺 are disjoint from 𝐻, (𝐹 ∪ 𝐻) is independent, 𝐹 is contained in the closure of (𝐺 ∪ 𝐻), and either 𝐹 or 𝐺 is finite, then there is a subset 𝑞 of 𝐺 equinumerous to 𝐹 such that (𝑞 ∪ 𝐻) is independent. This implies the case of Proposition 4.2.1 in [FaureFrolicher] p. 86 where either (𝐴 ∖ 𝐵) or (𝐵 ∖ 𝐴) is finite. The theorem is proven by induction using mreexexlem3d 16353 for the base case and mreexexlem4d 16354 for the induction step. (Contributed by David Moews, 1-May-2017.) Removed dependencies on ax-rep 4804 and ax-ac2 9323. (Revised by Brendan Leahy, 2-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹 ≈ 𝑞 ∧ (𝑞 ∪ 𝐻) ∈ 𝐼)) | ||
Theorem | mreexexdOLD 16356* | Obsolete proof of mreexexd 16355 as of 2-Jun-2021. Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if 𝐹 and 𝐺 are disjoint from 𝐻, (𝐹 ∪ 𝐻) is independent, 𝐹 is contained in the closure of (𝐺 ∪ 𝐻), and either 𝐹 or 𝐺 is finite, then there is a subset 𝑞 of 𝐺 equinumerous to 𝐹 such that (𝑞 ∪ 𝐻) is independent. This implies the case of Proposition 4.2.1 in [FaureFrolicher] p. 86 where either (𝐴 ∖ 𝐵) or (𝐵 ∖ 𝐴) is finite. The theorem is proven by induction using mreexexlem3d 16353 for the base case and mreexexlem4d 16354 for the induction step. (Contributed by David Moews, 1-May-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹 ≈ 𝑞 ∧ (𝑞 ∪ 𝐻) ∈ 𝐼)) | ||
Theorem | mreexdomd 16357* | In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 16355. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝑆 ≼ 𝑇) | ||
Theorem | mreexfidimd 16358* | In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 16357 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐼) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
Theorem | isacs 16359* | A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))) | ||
Theorem | acsmre 16360 | Algebraic closure systems are closure systems. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) | ||
Theorem | isacs2 16361* | In the definition of an algebraic closure system, we may always take the operation being closed over as the Moore closure. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) | ||
Theorem | acsfiel 16362* | A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) | ||
Theorem | acsfiel2 16363* | A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆)) | ||
Theorem | acsmred 16364 | An algebraic closure system is also a Moore system. Deduction form of acsmre 16360. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | ||
Theorem | isacs1i 16365* | A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋)) | ||
Theorem | mreacs 16366 | Algebraicity is a composable property; combining several algebraic closure properties gives another. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) | ||
Theorem | acsfn 16367* | Algebraicity of a conditional point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎)} ∈ (ACS‘𝑋)) | ||
Theorem | acsfn0 16368* | Algebraicity of a point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
Theorem | acsfn1 16369* | Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
Theorem | acsfn1c 16370* | Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
Theorem | acsfn2 16371* | Algebraicity of a two-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
Syntax | ccat 16372 | Extend class notation with the class of categories. |
class Cat | ||
Syntax | ccid 16373 | Extend class notation with the identity arrow of a category. |
class Id | ||
Syntax | chomf 16374 | Extend class notation to include functionalized Hom-set extractor. |
class Homf | ||
Syntax | ccomf 16375 | Extend class notation to include functionalized composition operation. |
class compf | ||
Definition | df-cat 16376* | A category is an abstraction of a structure (a group, a topology, an order...) Category theory consists in finding new formulation of the concepts associated with those structures (product, substructure...) using morphisms instead of the belonging relation. That trick has the interesting property that heterogeneous structures like topologies or groups for instance become comparable. Definition in [Lang] p. 53. In contrast to definition 3.1 of [Adamek] p. 21, where "A category is a quadruple A = (O, hom, id, o)", a category is defined as an extensible structure consisting of three slots: the objects "O" ((Base‘𝑐)), the morphisms "hom" ((Hom ‘𝑐)) and the composition law "o" ((comp‘𝑐)). The identities "id" are defined by their properties related to morphisms and their composition, see condition 3.1(b) in [Adamek] p. 21 and df-cid 16377. (Note: in category theory morphisms are also called arrows.) (Contributed by FL, 24-Oct-2007.) (Revised by Mario Carneiro, 2-Jan-2017.) |
⊢ Cat = {𝑐 ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓))))} | ||
Definition | df-cid 16377* | Define the category identity arrow. Since it is uniquely defined when it exists, we do not need to add it to the data of the category, and instead extract it by uniqueness. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ Id = (𝑐 ∈ Cat ↦ ⦋(Base‘𝑐) / 𝑏⦌⦋(Hom ‘𝑐) / ℎ⦌⦋(comp‘𝑐) / 𝑜⦌(𝑥 ∈ 𝑏 ↦ (℩𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓)))) | ||
Definition | df-homf 16378* | Define the functionalized Hom-set operator, which is exactly like Hom but is guaranteed to be a function on the base. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) | ||
Definition | df-comf 16379* | Define the functionalized composition operator, which is exactly like comp but is guaranteed to be a function of the proper type. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)))) | ||
Theorem | iscat 16380* | The predicate "is a category". (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ Cat ↔ ∀𝑥 ∈ 𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))))) | ||
Theorem | iscatd 16381* | Properties that determine a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ (𝑥𝐻𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(〈𝑥, 𝑥〉 · 𝑦) 1 ) = 𝑓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
Theorem | catidex 16382* | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) | ||
Theorem | catideu 16383* | Each object in a category has a unique identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) | ||
Theorem | cidfval 16384* | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 1 = (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓)))) | ||
Theorem | cidval 16385* | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓))) | ||
Theorem | cidffn 16386 | The identity arrow construction is a function on categories. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ Id Fn Cat | ||
Theorem | cidfn 16387 | The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → 1 Fn 𝐵) | ||
Theorem | catidd 16388* | Deduce the identity arrow in a category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ (𝑥𝐻𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(〈𝑥, 𝑥〉 · 𝑦) 1 ) = 𝑓) ⇒ ⊢ (𝜑 → (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ 1 )) | ||
Theorem | iscatd2 16389* | Version of iscatd 16381 with a uniform assumption list, for increased proof sharing capabilities. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜓 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 1 ∈ (𝑦𝐻𝑦)) & ⊢ ((𝜑 ∧ 𝜓) → ( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑓) = 𝑓) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑦, 𝑦〉 · 𝑧) 1 ) = 𝑔) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) & ⊢ ((𝜑 ∧ 𝜓) → ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ 1 ))) | ||
Theorem | catidcl 16390 | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) | ||
Theorem | catlid 16391 | Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (( 1 ‘𝑌)(〈𝑋, 𝑌〉 · 𝑌)𝐹) = 𝐹) | ||
Theorem | catrid 16392 | Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐹(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋)) = 𝐹) | ||
Theorem | catcocl 16393 | Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐻𝑍)) | ||
Theorem | catass 16394 | Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑊)) ⇒ ⊢ (𝜑 → ((𝐾(〈𝑌, 𝑍〉 · 𝑊)𝐺)(〈𝑋, 𝑌〉 · 𝑊)𝐹) = (𝐾(〈𝑋, 𝑍〉 · 𝑊)(𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹))) | ||
Theorem | 0catg 16395 | Any structure with an empty set of objects is a category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat) | ||
Theorem | 0cat 16396 | The empty set is a category, the empty category, see example 3.3(4.c) in [Adamek] p. 24. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ ∅ ∈ Cat | ||
Theorem | homffval 16397* | Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) | ||
Theorem | fnhomeqhomf 16398 | If the Hom-set operation is a function it is equal to the corresponding functionalized Hom-set operation. (Contributed by AV, 1-Mar-2020.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻) | ||
Theorem | homfval 16399 | Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌)) | ||
Theorem | homffn 16400 | The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐹 Fn (𝐵 × 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |