![]() |
Metamath
Proof Explorer Theorem List (p. 163 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pwsvscafval 16201 | Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑌) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋)) | ||
Theorem | pwsvscaval 16202 | Scalar multiplication of a single coordinate in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑌) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) | ||
Theorem | pwssca 16203 | The ring of scalars of a structure product. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝑆 = (Scalar‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑆 = (Scalar‘𝑌)) | ||
Theorem | pwsdiagel 16204 | Membership of diagonal elements in the structure power base set. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑌) ⇒ ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐼 × {𝐴}) ∈ 𝐶) | ||
Theorem | pwssnf1o 16205* | Triviality of singleton powers: set equipollence. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑅 ↑s {𝐼}) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ ({𝐼} × {𝑥})) & ⊢ 𝐶 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵–1-1-onto→𝐶) | ||
Syntax | cordt 16206 | Extend class notation with the order topology. |
class ordTop | ||
Syntax | cxrs 16207 | Extend class notation with the extended real number structure. |
class ℝ*𝑠 | ||
Definition | df-ordt 16208* | Define the order topology, given an order ≤, written as 𝑟 below. A closed subbasis for the order topology is given by the closed rays [𝑦, +∞) = {𝑧 ∈ 𝑋 ∣ 𝑦 ≤ 𝑧} and (-∞, 𝑦] = {𝑧 ∈ 𝑋 ∣ 𝑧 ≤ 𝑦}, along with (-∞, +∞) = 𝑋 itself. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ordTop = (𝑟 ∈ V ↦ (topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})))))) | ||
Definition | df-xrs 16209* | The extended real number structure. Unlike df-cnfld 19795, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 19795. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with ℂfld when restricted to ℝ. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ℝ*𝑠 = ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) | ||
Syntax | cqtop 16210 | Extend class notation with the quotient topology function. |
class qTop | ||
Syntax | cimas 16211 | Image structure function. |
class “s | ||
Syntax | cqus 16212 | Quotient structure function. |
class /s | ||
Syntax | cxps 16213 | Binary product structure function. |
class ×s | ||
Definition | df-qtop 16214* | Define the quotient topology given a function 𝑓 and topology 𝑗 on the domain of 𝑓. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ qTop = (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 “ ∪ 𝑗) ∣ ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗}) | ||
Definition | df-imas 16215* |
Define an image structure, which takes a structure and a function on the
base set, and maps all the operations via the function. For this to
work properly 𝑓 must either be injective or satisfy
the
well-definedness condition 𝑓(𝑎) = 𝑓(𝑐) ∧ 𝑓(𝑏) = 𝑓(𝑑) →
𝑓(𝑎 + 𝑏) = 𝑓(𝑐 + 𝑑) for each relevant operation.
Note that although we call this an "image" by association to df-ima 5156, in order to keep the definition simple we consider only the case when the domain of 𝐹 is equal to the base set of 𝑅. Other cases can be achieved by restricting 𝐹 (with df-res 5155) and/or 𝑅 ( with df-ress 15912) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by AV, 6-Oct-2020.) |
⊢ “s = (𝑓 ∈ V, 𝑟 ∈ V ↦ ⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran 𝑓〉, 〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉, 〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪ {〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈( ·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠 ‘𝑟)𝑞)))〉, 〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪ {〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑𝑚 (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑟) ∘ 𝑔))), ℝ*, < ))〉})) | ||
Definition | df-qus 16216* | Define a quotient ring (or quotient group), which is a special case of an image structure df-imas 16215 where the image function is 𝑥 ↦ [𝑥]𝑒. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | ||
Definition | df-xps 16217* | Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ ◡({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑟)Xs◡({𝑟} +𝑐 {𝑠})))) | ||
Theorem | imasval 16218* | Value of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ , = (·𝑖‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐸 = (dist‘𝑅) & ⊢ 𝑁 = (le‘𝑅) & ⊢ (𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) & ⊢ (𝜑 → ⊗ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}) & ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) & ⊢ (𝜑 → 𝐷 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ))) & ⊢ (𝜑 → ≤ = ((𝐹 ∘ 𝑁) ∘ ◡𝐹)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), ✚ 〉, 〈(.r‘ndx), ∙ 〉} ∪ {〈(Scalar‘ndx), 𝐺〉, 〈( ·𝑠 ‘ndx), ⊗ 〉, 〈(·𝑖‘ndx), 𝐼〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉})) | ||
Theorem | imasbas 16219 | The base set of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) | ||
Theorem | imasds 16220* | The distance function of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = (dist‘𝑅) & ⊢ 𝐷 = (dist‘𝑈) ⇒ ⊢ (𝜑 → 𝐷 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ))) | ||
Theorem | imasdsfn 16221 | The distance function is a function on the base set. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = (dist‘𝑅) & ⊢ 𝐷 = (dist‘𝑈) ⇒ ⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) | ||
Theorem | imasdsval 16222* | The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = (dist‘𝑅) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ⇒ ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) | ||
Theorem | imasdsval2 16223* | The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = (dist‘𝑅) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} & ⊢ 𝑇 = (𝐸 ↾ (𝑉 × 𝑉)) ⇒ ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))), ℝ*, < )) | ||
Theorem | imasplusg 16224* | The group operation in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑈) ⇒ ⊢ (𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) | ||
Theorem | imasmulr 16225* | The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | ||
Theorem | imassca 16226 | The scalar field of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) ⇒ ⊢ (𝜑 → 𝐺 = (Scalar‘𝑈)) | ||
Theorem | imasvsca 16227* | The scalar multiplication operation of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑈) ⇒ ⊢ (𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) | ||
Theorem | imasip 16228* | The inner product of an image structure. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ , = (·𝑖‘𝑅) & ⊢ 𝐼 = (·𝑖‘𝑈) ⇒ ⊢ (𝜑 → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}) | ||
Theorem | imastset 16229 | The topology of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝑂 = (TopSet‘𝑈) ⇒ ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) | ||
Theorem | imasle 16230 | The ordering of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝑁 = (le‘𝑅) & ⊢ ≤ = (le‘𝑈) ⇒ ⊢ (𝜑 → ≤ = ((𝐹 ∘ 𝑁) ∘ ◡𝐹)) | ||
Theorem | f1ocpbllem 16231 | Lemma for f1ocpbl 16232. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | f1ocpbl 16232 | An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)))) | ||
Theorem | f1ovscpbl 16233 | An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶)))) | ||
Theorem | f1olecpbl 16234 | An injection is compatible with any relations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐴𝑁𝐵 ↔ 𝐶𝑁𝐷))) | ||
Theorem | imasaddfnlem 16235* | The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) ⇒ ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) | ||
Theorem | imasaddvallem 16236* | The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
Theorem | imasaddflem 16237* | The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | ||
Theorem | imasaddfn 16238* | The image structure's group operation is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) | ||
Theorem | imasaddval 16239* | The value of an image structure's group operation. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
Theorem | imasaddf 16240* | The image structure's group operation is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | ||
Theorem | imasmulfn 16241* | The image structure's ring multiplication is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) | ||
Theorem | imasmulval 16242* | The value of an image structure's ring multiplication. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
Theorem | imasmulf 16243* | The image structure's ring multiplication is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | ||
Theorem | imasvscafn 16244* | The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) ⇒ ⊢ (𝜑 → ∙ Fn (𝐾 × 𝐵)) | ||
Theorem | imasvscaval 16245* | The value of an image structure's scalar multiplication. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
Theorem | imasvscaf 16246* | The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑈) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) | ||
Theorem | imasless 16247 | The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ ≤ = (le‘𝑈) ⇒ ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) | ||
Theorem | imasleval 16248* | The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ ≤ = (le‘𝑈) & ⊢ 𝑁 = (le‘𝑅) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌)) | ||
Theorem | qusval 16249* | Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | ||
Theorem | quslem 16250* | The function in qusval 16249 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) | ||
Theorem | qusin 16251 | Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ( ∼ “ 𝑉) ⊆ 𝑉) ⇒ ⊢ (𝜑 → 𝑈 = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) | ||
Theorem | qusbas 16252 | Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑉 / ∼ ) = (Base‘𝑈)) | ||
Theorem | quss 16253 | The scalar field of a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐾 = (Scalar‘𝑅) ⇒ ⊢ (𝜑 → 𝐾 = (Scalar‘𝑈)) | ||
Theorem | divsfval 16254* | Value of the function in qusval 16249. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ V) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) | ||
Theorem | ercpbllem 16255* | Lemma for ercpbl 16256. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ V) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) | ||
Theorem | ercpbl 16256* | Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ V) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 + 𝑏) ∈ 𝑉) & ⊢ (𝜑 → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)))) | ||
Theorem | erlecpbl 16257* | Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑉 ∈ V) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴𝑁𝐵 ↔ 𝐶𝑁𝐷))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (((𝐹‘𝐴) = (𝐹‘𝐶) ∧ (𝐹‘𝐵) = (𝐹‘𝐷)) → (𝐴𝑁𝐵 ↔ 𝐶𝑁𝐷))) | ||
Theorem | qusaddvallem 16258* | Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
Theorem | qusaddflem 16259* | The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) & ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) ⇒ ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) | ||
Theorem | qusaddval 16260* | The base set of an image structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
Theorem | qusaddf 16261* | The base set of an image structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (+g‘𝑅) & ⊢ ∙ = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) | ||
Theorem | qusmulval 16262* | The base set of an image structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
Theorem | qusmulf 16263* | The base set of an image structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑈) ⇒ ⊢ (𝜑 → ∙ :((𝑉 / ∼ ) × (𝑉 / ∼ ))⟶(𝑉 / ∼ )) | ||
Theorem | xpsc 16264 | A short expression for the pair function mapping 0 to 𝐴 and 1 to 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ◡({𝐴} +𝑐 {𝐵}) = (({∅} × {𝐴}) ∪ ({1𝑜} × {𝐵})) | ||
Theorem | xpscg 16265 | A short expression for the pair function mapping 0 to 𝐴 and 1 to 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡({𝐴} +𝑐 {𝐵}) = {〈∅, 𝐴〉, 〈1𝑜, 𝐵〉}) | ||
Theorem | xpscfn 16266 | The pair function is a function on 2𝑜 = {∅, 1𝑜}. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡({𝐴} +𝑐 {𝐵}) Fn 2𝑜) | ||
Theorem | xpsc0 16267 | The pair function maps 0 to 𝐴. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝐴 ∈ 𝑉 → (◡({𝐴} +𝑐 {𝐵})‘∅) = 𝐴) | ||
Theorem | xpsc1 16268 | The pair function maps 1 to 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝐵 ∈ 𝑉 → (◡({𝐴} +𝑐 {𝐵})‘1𝑜) = 𝐵) | ||
Theorem | xpscfv 16269 | The value of the pair function at an element of 2𝑜. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 2𝑜) → (◡({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵)) | ||
Theorem | xpsfrnel 16270* | Elementhood in the target space of the function 𝐹 appearing in xpsval 16279. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝐺 ∈ X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2𝑜 ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1𝑜) ∈ 𝐵)) | ||
Theorem | xpsfeq 16271 | A function on 2𝑜 is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ (𝐺 Fn 2𝑜 → ◡({(𝐺‘∅)} +𝑐 {(𝐺‘1𝑜)}) = 𝐺) | ||
Theorem | xpsfrnel2 16272* | Elementhood in the target space of the function 𝐹 appearing in xpsval 16279. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ (◡({𝑋} +𝑐 {𝑌}) ∈ X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | ||
Theorem | xpscf 16273 | Equivalent condition for the pair function to be a proper function on 𝐴. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (◡({𝑋} +𝑐 {𝑌}):2𝑜⟶𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) | ||
Theorem | xpsfval 16274* | The value of the function appearing in xpsval 16279. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐹𝑌) = ◡({𝑋} +𝑐 {𝑌})) | ||
Theorem | xpsff1o 16275* | The function appearing in xpsval 16279 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2𝑜 = {∅, 1𝑜}. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) ⇒ ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) | ||
Theorem | xpsfrn 16276* | A short expression for the indexed cartesian product on two indexes. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) ⇒ ⊢ ran 𝐹 = X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) | ||
Theorem | xpsfrn2 16277* | A short expression for the indexed cartesian product on two indexes. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran 𝐹 = X𝑘 ∈ 2𝑜 (◡({𝐴} +𝑐 {𝐵})‘𝑘)) | ||
Theorem | xpsff1o2 16278* | The function appearing in xpsval 16279 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2𝑜 = {∅, 1𝑜}. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ◡({𝑥} +𝑐 {𝑦})) ⇒ ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹 | ||
Theorem | xpsval 16279* | Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝑈 = (𝐺Xs◡({𝑅} +𝑐 {𝑆})) ⇒ ⊢ (𝜑 → 𝑇 = (◡𝐹 “s 𝑈)) | ||
Theorem | xpslem 16280* | The indexed structure product that appears in xpsval 16279 has the same base as the target of the function 𝐹. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ 𝑈 = (𝐺Xs◡({𝑅} +𝑐 {𝑆})) ⇒ ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) | ||
Theorem | xpsbas 16281 | The base set of the binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) | ||
Theorem | xpsaddlem 16282* | Lemma for xpsadd 16283 and xpsmul 16284. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐶) ∈ 𝑋) & ⊢ (𝜑 → (𝐵 × 𝐷) ∈ 𝑌) & ⊢ · = (𝐸‘𝑅) & ⊢ × = (𝐸‘𝑆) & ⊢ ∙ = (𝐸‘𝑇) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) & ⊢ 𝑈 = ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) & ⊢ ((𝜑 ∧ ◡({𝐴} +𝑐 {𝐵}) ∈ ran 𝐹 ∧ ◡({𝐶} +𝑐 {𝐷}) ∈ ran 𝐹) → ((◡𝐹‘◡({𝐴} +𝑐 {𝐵})) ∙ (◡𝐹‘◡({𝐶} +𝑐 {𝐷}))) = (◡𝐹‘(◡({𝐴} +𝑐 {𝐵})(𝐸‘𝑈)◡({𝐶} +𝑐 {𝐷})))) & ⊢ ((◡({𝑅} +𝑐 {𝑆}) Fn 2𝑜 ∧ ◡({𝐴} +𝑐 {𝐵}) ∈ (Base‘𝑈) ∧ ◡({𝐶} +𝑐 {𝐷}) ∈ (Base‘𝑈)) → (◡({𝐴} +𝑐 {𝐵})(𝐸‘𝑈)◡({𝐶} +𝑐 {𝐷})) = (𝑘 ∈ 2𝑜 ↦ ((◡({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(◡({𝑅} +𝑐 {𝑆})‘𝑘))(◡({𝐶} +𝑐 {𝐷})‘𝑘)))) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∙ 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) | ||
Theorem | xpsadd 16283 | Value of the addition operation in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐶) ∈ 𝑋) & ⊢ (𝜑 → (𝐵 × 𝐷) ∈ 𝑌) & ⊢ · = (+g‘𝑅) & ⊢ × = (+g‘𝑆) & ⊢ ∙ = (+g‘𝑇) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∙ 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) | ||
Theorem | xpsmul 16284 | Value of the multiplication operation in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐶) ∈ 𝑋) & ⊢ (𝜑 → (𝐵 × 𝐷) ∈ 𝑌) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ ∙ = (.r‘𝑇) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∙ 〈𝐶, 𝐷〉) = 〈(𝐴 · 𝐶), (𝐵 × 𝐷)〉) | ||
Theorem | xpssca 16285 | Value of the scalar field of a binary structure product. For concreteness, we choose the scalar field to match the left argument, but in most cases where this slot is meaningful both factors will have the same scalar field, so that it doesn't matter which factor is chosen. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐺 = (Scalar‘𝑇)) | ||
Theorem | xpsvsca 16286 | Value of the scalar multiplication function in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝐺 = (Scalar‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ × = ( ·𝑠 ‘𝑆) & ⊢ ∙ = ( ·𝑠 ‘𝑇) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑌) & ⊢ (𝜑 → (𝐴 · 𝐵) ∈ 𝑋) & ⊢ (𝜑 → (𝐴 × 𝐶) ∈ 𝑌) ⇒ ⊢ (𝜑 → (𝐴 ∙ 〈𝐵, 𝐶〉) = 〈(𝐴 · 𝐵), (𝐴 × 𝐶)〉) | ||
Theorem | xpsless 16287 | Closure of the ordering in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ ≤ = (le‘𝑇) ⇒ ⊢ (𝜑 → ≤ ⊆ ((𝑋 × 𝑌) × (𝑋 × 𝑌))) | ||
Theorem | xpsle 16288 | Value of the ordering in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ ≤ = (le‘𝑇) & ⊢ 𝑀 = (le‘𝑅) & ⊢ 𝑁 = (le‘𝑆) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ≤ 〈𝐶, 𝐷〉 ↔ (𝐴𝑀𝐶 ∧ 𝐵𝑁𝐷))) | ||
Syntax | cmre 16289 | The class of Moore systems. |
class Moore | ||
Syntax | cmrc 16290 | The class function generating Moore closures. |
class mrCls | ||
Syntax | cmri 16291 | mrInd is a class function which takes a Moore system to its set of independent sets. |
class mrInd | ||
Syntax | cacs 16292 | The class of algebraic closure (Moore) systems. |
class ACS | ||
Definition | df-mre 16293* |
Define a Moore collection, which is a family of subsets of a base set
which preserve arbitrary intersection. Elements of a Moore collection
are termed closed; Moore collections generalize the notion of
closedness from topologies (cldmre 20930) and vector spaces (lssmre 19014)
to the most general setting in which such concepts make sense.
Definition of Moore collection of sets in [Schechter] p. 78. A Moore
collection may also be called a closure system (Section 0.6 in
[Gratzer] p. 23.) The name Moore
collection is after Eliakim Hastings
Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.
See ismre 16297, mresspw 16299, mre1cl 16301 and mreintcl 16302 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 16307); as such the disjoint union of all Moore collections is sometimes considered as ∪ ran Moore, justified by mreunirn 16308. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) | ||
Definition | df-mrc 16294* |
Define the Moore closure of a generating set, which is the smallest
closed set containing all generating elements. Definition of Moore
closure in [Schechter] p. 79. This
generalizes topological closure
(mrccls 20931) and linear span (mrclsp 19037).
A Moore closure operation 𝑁 is (1) extensive, i.e., 𝑥 ⊆ (𝑁‘𝑥) for all subsets 𝑥 of the base set (mrcssid 16324), (2) isotone, i.e., 𝑥 ⊆ 𝑦 implies that (𝑁‘𝑥) ⊆ (𝑁‘𝑦) for all subsets 𝑥 and 𝑦 of the base set (mrcss 16323), and (3) idempotent, i.e., (𝑁‘(𝑁‘𝑥)) = (𝑁‘𝑥) for all subsets 𝑥 of the base set (mrcidm 16326.) Operators satisfying these three properties are in bijective correspondence with Moore collections, so these properties may be used to give an alternate characterization of a Moore collection by providing a closure operation 𝑁 on the set of subsets of a given base set which satisfies (1), (2), and (3); the closed sets can be recovered as those sets which equal their closures (Section 4.5 in [Schechter] p. 82.) (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
⊢ mrCls = (𝑐 ∈ ∪ ran Moore ↦ (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠})) | ||
Definition | df-mri 16295* | In a Moore system, a set is independent if no element of the set is in the closure of the set with the element removed (Section 0.6 in [Gratzer] p. 27; Definition 4.1.1 in [FaureFrolicher] p. 83.) mrInd is a class function which takes a Moore system to its set of independent sets. (Contributed by David Moews, 1-May-2017.) |
⊢ mrInd = (𝑐 ∈ ∪ ran Moore ↦ {𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))}) | ||
Definition | df-acs 16296* | An important subclass of Moore systems are those which can be interpreted as closure under some collection of operators of finite arity (the collection itself is not required to be finite). These are termed algebraic closure systems; similar to definition (A) of an algebraic closure system in [Schechter] p. 84, but to avoid the complexity of an arbitrary mixed collection of functions of various arities (especially if the axiom of infinity omex 8578 is to be avoided), we consider a single function defined on finite sets instead. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}) | ||
Theorem | ismre 16297* | Property of being a Moore collection on some base set. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | ||
Theorem | fnmre 16298 | The Moore collection generator is a well-behaved function. Analogue for Moore collections of fntopon 20776 for topologies. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ Moore Fn V | ||
Theorem | mresspw 16299 | A Moore collection is a subset of the power of the base set; each closed subset of the system is actually a subset of the base. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋) | ||
Theorem | mress 16300 | A Moore-closed subset is a subset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |