![]() |
Metamath
Proof Explorer Theorem List (p. 159 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | prmgaplem2 15801 | Lemma for prmgap 15810: The factorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 13-Aug-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)) | ||
Theorem | prmgaplcmlem1 15802 | Lemma for prmgaplcm 15811: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number is divisible by that integer. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼)) | ||
Theorem | prmgaplcmlem2 15803 | Lemma for prmgaplcm 15811: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)) | ||
Theorem | prmgaplem3 15804* | Lemma for prmgap 15810. (Contributed by AV, 9-Aug-2020.) |
⊢ 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
Theorem | prmgaplem4 15805* | Lemma for prmgap 15810. (Contributed by AV, 10-Aug-2020.) |
⊢ 𝐴 = {𝑝 ∈ ℙ ∣ (𝑁 < 𝑝 ∧ 𝑝 ≤ 𝑃)} ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑁 < 𝑃) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
Theorem | prmgaplem5 15806* | Lemma for prmgap 15810: for each integer greater than 2 there is a smaller prime closest to this integer, i.e. there is a smaller prime and no other prime is between this prime and the integer. (Contributed by AV, 9-Aug-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑝 ∈ ℙ (𝑝 < 𝑁 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑁)𝑧 ∉ ℙ)) | ||
Theorem | prmgaplem6 15807* | Lemma for prmgap 15810: for each positive integer there is a greater prime closest to this integer, i.e. there is a greater prime and no other prime is between this prime and the integer. (Contributed by AV, 10-Aug-2020.) |
⊢ (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)) | ||
Theorem | prmgaplem7 15808* | Lemma for prmgap 15810. (Contributed by AV, 12-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 ∈ (ℕ ↑𝑚 ℕ)) & ⊢ (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹‘𝑁) + 𝑖) gcd 𝑖)) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 < ((𝐹‘𝑁) + 2) ∧ ((𝐹‘𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) | ||
Theorem | prmgaplem8 15809* | Lemma for prmgap 15810. (Contributed by AV, 13-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹 ∈ (ℕ ↑𝑚 ℕ)) & ⊢ (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹‘𝑁) + 𝑖) gcd 𝑖)) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) | ||
Theorem | prmgap 15810* | The prime gap theorem: for each positive integer there are (at least) two successive primes with a difference ("gap") at least as big as the given integer. (Contributed by AV, 13-Aug-2020.) |
⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) | ||
Theorem | prmgaplcm 15811* | Alternate proof of prmgap 15810: in contrast to prmgap 15810, where the gap starts at n! , the factorial of n, the gap starts at the least common multiple of all positive integers less than or equal to n. (Contributed by AV, 13-Aug-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) | ||
Theorem | prmgapprmolem 15812 | Lemma for prmgapprmo 15813: The primorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼)) | ||
Theorem | prmgapprmo 15813* | Alternate proof of prmgap 15810: in contrast to prmgap 15810, where the gap starts at n! , the factorial of n, the gap starts at n#, the primorial of n. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) | ||
Theorem | dec2dvds 15814 | Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 · 2) = 𝐶 & ⊢ 𝐷 = (𝐶 + 1) ⇒ ⊢ ¬ 2 ∥ ;𝐴𝐷 | ||
Theorem | dec5dvds 15815 | Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐵 < 5 ⇒ ⊢ ¬ 5 ∥ ;𝐴𝐵 | ||
Theorem | dec5dvds2 15816 | Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐵 < 5 & ⊢ (5 + 𝐵) = 𝐶 ⇒ ⊢ ¬ 5 ∥ ;𝐴𝐶 | ||
Theorem | dec5nprm 15817 | Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ ¬ ;𝐴5 ∈ ℙ | ||
Theorem | dec2nprm 15818 | Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 · 2) = 𝐶 ⇒ ⊢ ¬ ;𝐴𝐶 ∈ ℙ | ||
Theorem | modxai 15819 | Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) & ⊢ (𝐵 + 𝐶) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | mod2xi 15820 | Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (2 · 𝐵) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | modxp1i 15821 | Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (𝐵 + 1) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | mod2xnegi 15822 | Version of mod2xi 15820 with a negative mod value. (Contributed by Mario Carneiro, 21-Feb-2014.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐿 mod 𝑁) & ⊢ (2 · 𝐵) = 𝐸 & ⊢ (𝐿 + 𝐾) = 𝑁 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | modsubi 15823 | Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (𝑀 + 𝐵) = 𝐾 ⇒ ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | gcdi 15824 | Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.) |
⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ (𝑁 gcd 𝑅) = 𝐺 & ⊢ ((𝐾 · 𝑁) + 𝑅) = 𝑀 ⇒ ⊢ (𝑀 gcd 𝑁) = 𝐺 | ||
Theorem | gcdmodi 15825 | Calculate a GCD via Euclid's algorithm. Theorem 5.6 in [ApostolNT] p. 109. (Contributed by Mario Carneiro, 19-Feb-2014.) |
⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ & ⊢ (𝐾 mod 𝑁) = (𝑅 mod 𝑁) & ⊢ (𝑁 gcd 𝑅) = 𝐺 ⇒ ⊢ (𝐾 gcd 𝑁) = 𝐺 | ||
Theorem | decexp2 15826 | Calculate a power of two. (Contributed by Mario Carneiro, 19-Feb-2014.) |
⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 2) = 𝑁 ⇒ ⊢ ((4 · (2↑𝑀)) + 0) = (2↑𝑁) | ||
Theorem | numexp0 15827 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝐴↑0) = 1 | ||
Theorem | numexp1 15828 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝐴↑1) = 𝐴 | ||
Theorem | numexpp1 15829 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 1) = 𝑁 & ⊢ ((𝐴↑𝑀) · 𝐴) = 𝐶 ⇒ ⊢ (𝐴↑𝑁) = 𝐶 | ||
Theorem | numexp2x 15830 | Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (2 · 𝑀) = 𝑁 & ⊢ (𝐴↑𝑀) = 𝐷 & ⊢ (𝐷 · 𝐷) = 𝐶 ⇒ ⊢ (𝐴↑𝑁) = 𝐶 | ||
Theorem | decsplit0b 15831 | Split a decimal number into two parts. Base case: 𝑁 = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑0)) + 𝐵) = (𝐴 + 𝐵) | ||
Theorem | decsplit0 15832 | Split a decimal number into two parts. Base case: 𝑁 = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑0)) + 0) = 𝐴 | ||
Theorem | decsplit1 15833 | Split a decimal number into two parts. Base case: 𝑁 = 1. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑1)) + 𝐵) = ;𝐴𝐵 | ||
Theorem | decsplit 15834 | Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 1) = 𝑁 & ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 ⇒ ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 | ||
Theorem | decsplit0bOLD 15835 | Obsolete version of decsplit0b 15831 as of 9-Sep-2021. (Contributed by Mario Carneiro, 16-Jul-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (10↑0)) + 𝐵) = (𝐴 + 𝐵) | ||
Theorem | decsplit0OLD 15836 | Obsolete version of decsplit0 15832 as of 9-Sep-2021. (Contributed by Mario Carneiro, 16-Jul-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (10↑0)) + 0) = 𝐴 | ||
Theorem | decsplit1OLD 15837 | Obsolete version of decsplit1 15833 as of 9-Sep-2021. (Contributed by Mario Carneiro, 16-Jul-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (10↑1)) + 𝐵) = ;𝐴𝐵 | ||
Theorem | decsplitOLD 15838 | Obsolete version of decsplit 15834 as of 9-Sep-2021. (Contributed by Mario Carneiro, 16-Jul-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 1) = 𝑁 & ⊢ ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶 ⇒ ⊢ ((𝐴 · (10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 | ||
Theorem | karatsuba 15839 | The Karatsuba multiplication algorithm. If 𝑋 and 𝑌 are decomposed into two groups of digits of length 𝑀 (only the lower group is known to be this size but the algorithm is most efficient when the partition is chosen near the middle of the digit string), then 𝑋𝑌 can be written in three groups of digits, where each group needs only one multiplication. Thus, we can halve both inputs with only three multiplications on the smaller operands, yielding an asymptotic improvement of n^(log2 3) instead of n^2 for the "naive" algorithm decmul1c 11625. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑆 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐴 · 𝐶) = 𝑅 & ⊢ (𝐵 · 𝐷) = 𝑇 & ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇) & ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝑋 & ⊢ ((𝐶 · (;10↑𝑀)) + 𝐷) = 𝑌 & ⊢ ((𝑅 · (;10↑𝑀)) + 𝑆) = 𝑊 & ⊢ ((𝑊 · (;10↑𝑀)) + 𝑇) = 𝑍 ⇒ ⊢ (𝑋 · 𝑌) = 𝑍 | ||
Theorem | karatsubaOLD 15840 | Obsolete version of karatsuba 15839 as of 9-Sep-2021. (Contributed by Mario Carneiro, 16-Jul-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑆 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐴 · 𝐶) = 𝑅 & ⊢ (𝐵 · 𝐷) = 𝑇 & ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇) & ⊢ ((𝐴 · (10↑𝑀)) + 𝐵) = 𝑋 & ⊢ ((𝐶 · (10↑𝑀)) + 𝐷) = 𝑌 & ⊢ ((𝑅 · (10↑𝑀)) + 𝑆) = 𝑊 & ⊢ ((𝑊 · (10↑𝑀)) + 𝑇) = 𝑍 ⇒ ⊢ (𝑋 · 𝑌) = 𝑍 | ||
Theorem | 2exp4 15841 | Two to the fourth power is 16. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ (2↑4) = ;16 | ||
Theorem | 2exp6 15842 | Two to the sixth power is 64. (Contributed by Mario Carneiro, 20-Apr-2015.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ (2↑6) = ;64 | ||
Theorem | 2exp8 15843 | Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ (2↑8) = ;;256 | ||
Theorem | 2exp16 15844 | Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ (2↑;16) = ;;;;65536 | ||
Theorem | 3exp3 15845 | Three to the third power is 27. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ (3↑3) = ;27 | ||
Theorem | 2expltfac 15846 | The factorial grows faster than two to the power 𝑁. (Contributed by Mario Carneiro, 15-Sep-2016.) |
⊢ (𝑁 ∈ (ℤ≥‘4) → (2↑𝑁) < (!‘𝑁)) | ||
Theorem | cshwsidrepsw 15847 | If cyclically shifting a word of length being a prime number by a number of positions which is not divisible by the prime number results in the word itself, the word is a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (#‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (#‘𝑊)))) | ||
Theorem | cshwsidrepswmod0 15848 | If cyclically shifting a word of length being a prime number results in the word itself, the shift must be either by 0 (modulo the length of the word) or the word must be a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (#‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (#‘𝑊))))) | ||
Theorem | cshwshashlem1 15849* | If cyclically shifting a word of length being a prime number not consisting of identical symbols by at least one position (and not by as many positions as the length of the word), the result will not be the word itself. (Contributed by AV, 19-May-2018.) (Revised by AV, 8-Jun-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ)) ⇒ ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(#‘𝑊))) → (𝑊 cyclShift 𝐿) ≠ 𝑊) | ||
Theorem | cshwshashlem2 15850* | If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ)) ⇒ ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(#‘𝑊)) ∧ 𝐾 ∈ (0..^(#‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) | ||
Theorem | cshwshashlem3 15851* | If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ)) ⇒ ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(#‘𝑊)) ∧ 𝐾 ∈ (0..^(#‘𝑊)) ∧ 𝐾 ≠ 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) | ||
Theorem | cshwsdisj 15852* | The singletons resulting by cyclically shifting a given word of length being a prime number and not consisting of identical symbols is a disjoint collection. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ)) ⇒ ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(#‘𝑊)){(𝑊 cyclShift 𝑛)}) | ||
Theorem | cshwsiun 15853* | The set of (different!) words resulting by cyclically shifting a given word is an indexed union. (Contributed by AV, 19-May-2018.) (Revised by AV, 8-Jun-2018.) (Proof shortened by AV, 8-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ (𝑊 ∈ Word 𝑉 → 𝑀 = ∪ 𝑛 ∈ (0..^(#‘𝑊)){(𝑊 cyclShift 𝑛)}) | ||
Theorem | cshwsex 15854* | The class of (different!) words resulting by cyclically shifting a given word is a set. (Contributed by AV, 8-Jun-2018.) (Revised by AV, 8-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ (𝑊 ∈ Word 𝑉 → 𝑀 ∈ V) | ||
Theorem | cshws0 15855* | The size of the set of (different!) words resulting by cyclically shifting an empty word is 0. (Contributed by AV, 8-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ (𝑊 = ∅ → (#‘𝑀) = 0) | ||
Theorem | cshwrepswhash1 15856* | The size of the set of (different!) words resulting by cyclically shifting a nonempty "repeated symbol word" is 1. (Contributed by AV, 18-May-2018.) (Revised by AV, 8-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (#‘𝑀) = 1) | ||
Theorem | cshwshashnsame 15857* | If a word (not consisting of identical symbols) has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(#‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (#‘𝑀) = (#‘𝑊))) | ||
Theorem | cshwshash 15858* | If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(#‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) ∈ ℙ) → ((#‘𝑀) = (#‘𝑊) ∨ (#‘𝑀) = 1)) | ||
Theorem | prmlem0 15859* | Lemma for prmlem1 15861 and prmlem2 15874. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ((¬ 2 ∥ 𝑀 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) & ⊢ (𝐾 ∈ ℙ → ¬ 𝐾 ∥ 𝑁) & ⊢ (𝐾 + 2) = 𝑀 ⇒ ⊢ ((¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) | ||
Theorem | prmlem1a 15860* | A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 1 < 𝑁 & ⊢ ¬ 2 ∥ 𝑁 & ⊢ ¬ 3 ∥ 𝑁 & ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | prmlem1 15861 | A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 1 < 𝑁 & ⊢ ¬ 2 ∥ 𝑁 & ⊢ ¬ 3 ∥ 𝑁 & ⊢ 𝑁 < ;25 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 5prm 15862 | 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ 5 ∈ ℙ | ||
Theorem | 6nprm 15863 | 6 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ¬ 6 ∈ ℙ | ||
Theorem | 7prm 15864 | 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ 7 ∈ ℙ | ||
Theorem | 8nprm 15865 | 8 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ¬ 8 ∈ ℙ | ||
Theorem | 9nprm 15866 | 9 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ¬ 9 ∈ ℙ | ||
Theorem | 10nprm 15867 | 10 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ ¬ ;10 ∈ ℙ | ||
Theorem | 10nprmOLD 15868 | Obsolete version of 10nprm 15867 as of 6-Sep-2021. (Contributed by Mario Carneiro, 18-Feb-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ¬ 10 ∈ ℙ | ||
Theorem | 11prm 15869 | 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;11 ∈ ℙ | ||
Theorem | 13prm 15870 | 13 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;13 ∈ ℙ | ||
Theorem | 17prm 15871 | 17 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;17 ∈ ℙ | ||
Theorem | 19prm 15872 | 19 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;19 ∈ ℙ | ||
Theorem | 23prm 15873 | 23 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;23 ∈ ℙ | ||
Theorem | prmlem2 15874 |
Our last proving session got as far as 25 because we started with the
two "bootstrap" primes 2 and 3, and the next prime is 5, so
knowing that
2 and 3 are prime and 4 is not allows us to cover the numbers less than
5↑2 = 25. Additionally, nonprimes are
"easy", so we can extend
this range of known prime/nonprimes all the way until 29, which is the
first prime larger than 25. Thus, in this lemma we extend another
blanket out to 29↑2 = 841, from which we
can prove even more
primes. If we wanted, we could keep doing this, but the goal is
Bertrand's postulate, and for that we only need a few large primes - we
don't need to find them all, as we have been doing thus far. So after
this blanket runs out, we'll have to switch to another method (see
1259prm 15890).
As a side note, you can see the pattern of the primes in the indentation pattern of this lemma! (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 < ;;841 & ⊢ 1 < 𝑁 & ⊢ ¬ 2 ∥ 𝑁 & ⊢ ¬ 3 ∥ 𝑁 & ⊢ ¬ 5 ∥ 𝑁 & ⊢ ¬ 7 ∥ 𝑁 & ⊢ ¬ ;11 ∥ 𝑁 & ⊢ ¬ ;13 ∥ 𝑁 & ⊢ ¬ ;17 ∥ 𝑁 & ⊢ ¬ ;19 ∥ 𝑁 & ⊢ ¬ ;23 ∥ 𝑁 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 37prm 15875 | 37 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;37 ∈ ℙ | ||
Theorem | 43prm 15876 | 43 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;43 ∈ ℙ | ||
Theorem | 83prm 15877 | 83 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;83 ∈ ℙ | ||
Theorem | 139prm 15878 | 139 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;139 ∈ ℙ | ||
Theorem | 163prm 15879 | 163 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;163 ∈ ℙ | ||
Theorem | 317prm 15880 | 317 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;317 ∈ ℙ | ||
Theorem | 631prm 15881 | 631 is a prime number. (Contributed by Mario Carneiro, 1-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;631 ∈ ℙ | ||
Theorem | prmo4 15882 | The primorial of 4. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘4) = 6 | ||
Theorem | prmo5 15883 | The primorial of 5. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘5) = ;30 | ||
Theorem | prmo6 15884 | The primorial of 6. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘6) = ;30 | ||
Theorem | 1259lem1 15885 | Lemma for 1259prm 15890. Calculate a power mod. In decimal, we calculate 2↑16 = 52𝑁 + 68≡68 and 2↑17≡68 · 2 = 136 in this lemma. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;17) mod 𝑁) = (;;136 mod 𝑁) | ||
Theorem | 1259lem2 15886 | Lemma for 1259prm 15890. Calculate a power mod. In decimal, we calculate 2↑34 = (2↑17)↑2≡136↑2≡14𝑁 + 870. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;34) mod 𝑁) = (;;870 mod 𝑁) | ||
Theorem | 1259lem3 15887 | Lemma for 1259prm 15890. Calculate a power mod. In decimal, we calculate 2↑38 = 2↑34 · 2↑4≡870 · 16 = 11𝑁 + 71 and 2↑76 = (2↑34)↑2≡71↑2 = 4𝑁 + 5≡5. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;76) mod 𝑁) = (5 mod 𝑁) | ||
Theorem | 1259lem4 15888 | Lemma for 1259prm 15890. Calculate a power mod. In decimal, we calculate 2↑306 = (2↑76)↑4 · 4≡5↑4 · 4 = 2𝑁 − 18, 2↑612 = (2↑306)↑2≡18↑2 = 324, 2↑629 = 2↑612 · 2↑17≡324 · 136 = 35𝑁 − 1 and finally 2↑(𝑁 − 1) = (2↑629)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
Theorem | 1259lem5 15889 | Lemma for 1259prm 15890. Calculate the GCD of 2↑34 − 1≡869 with 𝑁 = 1259. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 | ||
Theorem | 1259prm 15890 | 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 2503lem1 15891 | Lemma for 2503prm 15894. Calculate a power mod. In decimal, we calculate 2↑18 = 512↑2 = 104𝑁 + 1832≡1832. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ ((2↑;18) mod 𝑁) = (;;;1832 mod 𝑁) | ||
Theorem | 2503lem2 15892 | Lemma for 2503prm 15894. Calculate a power mod. We calculate 2↑19 = 2↑18 · 2≡1832 · 2 = 𝑁 + 1161, 2↑38 = (2↑19)↑2≡1161↑2 = 538𝑁 + 1307, 2↑39 = 2↑38 · 2≡1307 · 2 = 𝑁 + 111, 2↑78 = (2↑39)↑2≡111↑2 = 5𝑁 − 194, 2↑156 = (2↑78)↑2≡194↑2 = 15𝑁 + 91, 2↑312 = (2↑156)↑2≡91↑2 = 3𝑁 + 772, 2↑624 = (2↑312)↑2≡772↑2 = 238𝑁 + 270, 2↑1248 = (2↑624)↑2≡270↑2 = 29𝑁 + 313, 2↑1251 = 2↑1248 · 8≡313 · 8 = 𝑁 + 1 and finally 2↑(𝑁 − 1) = (2↑1251)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
Theorem | 2503lem3 15893 | Lemma for 2503prm 15894. Calculate the GCD of 2↑18 − 1≡1831 with 𝑁 = 2503. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ (((2↑;18) − 1) gcd 𝑁) = 1 | ||
Theorem | 2503prm 15894 | 2503 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 4001lem1 15895 | Lemma for 4001prm 15899. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑;;200) mod 𝑁) = (;;902 mod 𝑁) | ||
Theorem | 4001lem2 15896 | Lemma for 4001prm 15899. Calculate a power mod. In decimal, we calculate 2↑400 = (2↑200)↑2≡902↑2 = 203𝑁 + 1401 and 2↑800 = (2↑400)↑2≡1401↑2 = 490𝑁 + 2311 ≡2311. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑;;800) mod 𝑁) = (;;;2311 mod 𝑁) | ||
Theorem | 4001lem3 15897 | Lemma for 4001prm 15899. Calculate a power mod. In decimal, we calculate 2↑1000 = 2↑800 · 2↑200≡2311 · 902 = 521𝑁 + 1 and finally 2↑(𝑁 − 1) = (2↑1000)↑4≡1↑4 = 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
Theorem | 4001lem4 15898 | Lemma for 4001prm 15899. Calculate the GCD of 2↑800 − 1≡2310 with 𝑁 = 4001. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ (((2↑;;800) − 1) gcd 𝑁) = 1 | ||
Theorem | 4001prm 15899 | 4001 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ 𝑁 ∈ ℙ | ||
An "extensible structure" (or "structure" in short, at least in this section) is used to define a specific group, ring, poset, and so on. An extensible structure can contain many components. For example, a group will have at least two components (base set and operation), although it can be further specialized by adding other components such as a multiplicative operation for rings (and still remain a group per our definition). Thus, every ring is also a group. This extensible structure approach allows theorems from more general structures (such as groups) to be reused for more specialized structures (such as rings) without having to reprove anything. Structures are common in mathematics, but in informal (natural language) proofs the details are assumed in ways that we must make explicit. An extensible structure is implemented as a function (a set of ordered pairs) on a finite (and not necessarily sequential) subset of ℕ. The function's argument is the index of a structure component (such as 1 for the base set of a group), and its value is the component (such as the base set). By convention, we normally avoid direct reference to the hard-coded numeric index and instead use structure component extractors such as ndxid 15930 and strfv 15954. Using extractors makes it easier to change numeric indices and also makes the components' purpose clearer. For example, as noted in ndxid 15930, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using the extensible structure {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. There are many other possible ways to handle structures. We chose this extensible structure approach because this approach (1) results in simpler notation than other approaches we are aware of, and (2) is easier to do proofs with. We cannot use an approach that uses "hidden" arguments; Metamath does not support hidden arguments, and in any case we want nothing hidden. It would be possible to use a categorical approach (e.g., something vaguely similar to Lean's mathlib). However, instances (the chain of proofs that an 𝑋 is a 𝑌 via a bunch of forgetful functors) can cause serious performance problems for automated tooling, and the resulting proofs would be painful to look at directly (in the case of Lean, they are long past the level where people would find it acceptable to look at them directly). Metamath is working under much stricter conditions than this, and it has still managed to achieve about the same level of flexibility through this "extensible structure" approach. To create a substructure of a given extensible structure, you can simply use the multifunction restriction operator for extensible structures ↾s as defined in df-ress 15912. This can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone. Individual kinds of structures will need to handle this behavior by ignoring operators' values outside the range (like Ring), defining a function using the base set and applying that (like TopGrp), or explicitly truncating the slot before use (like MetSp). For example, the unital ring of integers ℤring is defined in df-zring 19867 as simply ℤring = (ℂfld ↾s ℤ). This can be similarly done for all other subsets of ℂ, which has all the structure we can show applies to it, and this all comes "for free". Should we come up with some new structure in the future that we wish ℂ to inherit, then we change the definition of ℂfld, reprove all the slot extraction theorems, add a new one, and that's it. None of the other downstream theorems have to change. Note that the construct of df-prds 16155 addresses a different situation. It is not possible to have SubGroup and SubRing be the same thing because they produce different outputs on the same input. The subgroups of an extensible structure treated as a group are not the same as the subrings of that same structure. With df-prds 16155 it can actually reasonably perform the task, that is, being the product group given a family of groups, while also being the product ring given a family of rings. There is no contradiction here because the group part of a product ring is a product group. There is also a general theory of "substructure algebras", in the form of df-mre 16293 and df-acs 16296. SubGroup is a Moore collection, as is SubRing, SubRng and many other substructure collections. But it is not useful for picking out a particular collection of interest; SubRing and SubGroup still need to be defined and they are distinct --- nothing is going to select these definitions for us. Extensible structures only work well when they represent concrete categories, where there is a "base set", morphisms are functions, and subobjects are subsets with induced operations. In short, they primarily work well for "sets with (some) extra structure". Extensible structures may not suffice for more complicated situations. For example, in manifolds, ↾s would not work. That said, extensible structures are sufficient for many of the structures that set.mm currently considers, and offer a good compromise for a goal-oriented formalization. | ||
Syntax | cstr 15900 | Extend class notation with the class of structures with components numbered below 𝐴. |
class Struct |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |