![]() |
Metamath
Proof Explorer Theorem List (p. 150 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | coscl 14901 | Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | ||
Theorem | tanval 14902 | Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | ||
Theorem | tancl 14903 | The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ) | ||
Theorem | sincld 14904 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) | ||
Theorem | coscld 14905 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℂ) | ||
Theorem | tancld 14906 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) | ||
Theorem | tanval2 14907 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) | ||
Theorem | tanval3 14908 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1)))) | ||
Theorem | resinval 14909 | The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) | ||
Theorem | recosval 14910 | The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) | ||
Theorem | efi4p 14911* | Separate out the first four terms of the infinite series expansion of the exponential function of an imaginary number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
Theorem | resin4p 14912* | Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
Theorem | recos4p 14913* | Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
Theorem | resincl 14914 | The sine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | ||
Theorem | recoscl 14915 | The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | ||
Theorem | retancl 14916 | The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℝ) | ||
Theorem | resincld 14917 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) | ||
Theorem | recoscld 14918 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) | ||
Theorem | retancld 14919 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) | ||
Theorem | sinneg 14920 | The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | ||
Theorem | cosneg 14921 | The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | ||
Theorem | tanneg 14922 | The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴)) | ||
Theorem | sin0 14923 | Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.) |
⊢ (sin‘0) = 0 | ||
Theorem | cos0 14924 | Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.) |
⊢ (cos‘0) = 1 | ||
Theorem | tan0 14925 | The value of the tangent function at zero is zero. (Contributed by David A. Wheeler, 16-Mar-2014.) |
⊢ (tan‘0) = 0 | ||
Theorem | efival 14926 | The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | ||
Theorem | efmival 14927 | The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴)))) | ||
Theorem | sinhval 14928 | Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) | ||
Theorem | coshval 14929 | Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) | ||
Theorem | resinhcl 14930 | The hyperbolic sine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) ∈ ℝ) | ||
Theorem | rpcoshcl 14931 | The hyperbolic cosine of a real number is a positive real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+) | ||
Theorem | recoshcl 14932 | The hyperbolic cosine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ) | ||
Theorem | retanhcl 14933 | The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ) | ||
Theorem | tanhlt1 14934 | The hyperbolic tangent of a real number is upper bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1) | ||
Theorem | tanhbnd 14935 | The hyperbolic tangent of a real number is bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) | ||
Theorem | efeul 14936 | Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006.) |
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · ((cos‘(ℑ‘𝐴)) + (i · (sin‘(ℑ‘𝐴)))))) | ||
Theorem | efieq 14937 | The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵)))) | ||
Theorem | sinadd 14938 | Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵)))) | ||
Theorem | cosadd 14939 | Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) | ||
Theorem | tanaddlem 14940 | A useful intermediate step in tanadd 14941 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) ≠ 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) ≠ 1)) | ||
Theorem | tanadd 14941 | Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵))))) | ||
Theorem | sinsub 14942 | Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 − 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))) | ||
Theorem | cossub 14943 | Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | ||
Theorem | addsin 14944 | Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) + (sin‘𝐵)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | subsin 14945 | Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | sinmul 14946 | Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 14939 and cossub 14943. (Contributed by David A. Wheeler, 26-May-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) | ||
Theorem | cosmul 14947 | Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 14939 and cossub 14943. (Contributed by David A. Wheeler, 26-May-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴 − 𝐵)) + (cos‘(𝐴 + 𝐵))) / 2)) | ||
Theorem | addcos 14948 | Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) + (cos‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | subcos 14949 | Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
Theorem | sincossq 14950 | Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | ||
Theorem | sin2t 14951 | Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) | ||
Theorem | cos2t 14952 | Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | ||
Theorem | cos2tsin 14953 | Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) | ||
Theorem | sinbnd 14954 | The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) | ||
Theorem | cosbnd 14955 | The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) | ||
Theorem | sinbnd2 14956 | The sine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ (-1[,]1)) | ||
Theorem | cosbnd2 14957 | The cosine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ (-1[,]1)) | ||
Theorem | ef01bndlem 14958* | Lemma for sin01bnd 14959 and cos01bnd 14960. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)) < ((𝐴↑4) / 6)) | ||
Theorem | sin01bnd 14959 | Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) | ||
Theorem | cos01bnd 14960 | Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))) | ||
Theorem | cos1bnd 14961 | Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) | ||
Theorem | cos2bnd 14962 | Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9)) | ||
Theorem | sinltx 14963 | The sine of a positive real number is less than its argument. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ (𝐴 ∈ ℝ+ → (sin‘𝐴) < 𝐴) | ||
Theorem | sin01gt0 14964 | The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.) |
⊢ (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴)) | ||
Theorem | cos01gt0 14965 | The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴)) | ||
Theorem | sin02gt0 14966 | The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴)) | ||
Theorem | sincos1sgn 14967 | The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (0 < (sin‘1) ∧ 0 < (cos‘1)) | ||
Theorem | sincos2sgn 14968 | The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | ||
Theorem | sin4lt0 14969 | The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) |
⊢ (sin‘4) < 0 | ||
Theorem | absefi 14970 | The absolute value of the exponential function of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.) |
⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) | ||
Theorem | absef 14971 | The absolute value of the exponential function is the exponential function of the real part. (Contributed by Paul Chapman, 13-Sep-2007.) |
⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) | ||
Theorem | absefib 14972 | A number is real iff its imaginary exponential has absolute value one. (Contributed by NM, 21-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1)) | ||
Theorem | efieq1re 14973 | A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ) | ||
Theorem | demoivre 14974 | De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 14975 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
Theorem | demoivreALT 14975 | Alternate proof of demoivre 14974. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
Theorem | eirrlem 14976* | Lemma for eirr 14977. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝑄 ∈ ℕ) & ⊢ (𝜑 → e = (𝑃 / 𝑄)) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | eirr 14977 | e is irrational. (Contributed by Paul Chapman, 9-Feb-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
⊢ e ∉ ℚ | ||
Theorem | egt2lt3 14978 | Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ (2 < e ∧ e < 3) | ||
Theorem | epos 14979 | Euler's constant e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008.) |
⊢ 0 < e | ||
Theorem | epr 14980 | Euler's constant e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.) |
⊢ e ∈ ℝ+ | ||
Theorem | ene0 14981 | e is not 0. (Contributed by David A. Wheeler, 17-Oct-2017.) |
⊢ e ≠ 0 | ||
Theorem | ene1 14982 | e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017.) |
⊢ e ≠ 1 | ||
Theorem | xpnnen 14983 | The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
⊢ (ℕ × ℕ) ≈ ℕ | ||
Theorem | znnenlem 14984 | Lemma for znnen 14985. (Contributed by NM, 31-Jul-2004.) |
⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (2 · 𝑥) = ((-2 · 𝑦) + 1))) | ||
Theorem | znnen 14985 | The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
⊢ ℤ ≈ ℕ | ||
Theorem | qnnen 14986 | The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set (ℤ × ℕ) is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.) |
⊢ ℚ ≈ ℕ | ||
Theorem | rpnnen2lem1 14987* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝐴)‘𝑁) = if(𝑁 ∈ 𝐴, ((1 / 3)↑𝑁), 0)) | ||
Theorem | rpnnen2lem2 14988* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) | ||
Theorem | rpnnen2lem3 14989* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) | ||
Theorem | rpnnen2lem4 14990* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 31-Aug-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘))) | ||
Theorem | rpnnen2lem5 14991* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) | ||
Theorem | rpnnen2lem6 14992* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘) ∈ ℝ) | ||
Theorem | rpnnen2lem7 14993* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐵)‘𝑘)) | ||
Theorem | rpnnen2lem8 14994* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑀 − 1))((𝐹‘𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘))) | ||
Theorem | rpnnen2lem9 14995* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))) | ||
Theorem | rpnnen2lem10 14996* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) & ⊢ (𝜑 → 𝑚 ∈ (𝐴 ∖ 𝐵)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵))) & ⊢ (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝐵)‘𝑘)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝐵)‘𝑘)) | ||
Theorem | rpnnen2lem11 14997* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) & ⊢ (𝜑 → 𝑚 ∈ (𝐴 ∖ 𝐵)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝐴 ↔ 𝑛 ∈ 𝐵))) & ⊢ (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹‘𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝐵)‘𝑘)) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
Theorem | rpnnen2lem12 14998* | Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) ⇒ ⊢ 𝒫 ℕ ≼ (0[,]1) | ||
Theorem | rpnnen2 14999 |
The other half of rpnnen 15000, where we show an injection from sets of
positive integers to real numbers. The obvious choice for this is
binary expansion, but it has the unfortunate property that it does not
produce an injection on numbers which end with all 0's or all 1's (the
more well-known decimal version of this is 0.999... 14656). Instead, we
opt for a ternary expansion, which produces (a scaled version of) the
Cantor set. Since the Cantor set is riddled with gaps, we can show that
any two sequences that are not equal must differ somewhere, and when
they do, they are placed a finite distance apart, thus ensuring that the
map is injective.
Our map assigns to each subset 𝐴 of the positive integers the number Σ𝑘 ∈ 𝐴(3↑-𝑘) = Σ𝑘 ∈ ℕ((𝐹‘𝐴)‘𝑘), where ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, (3↑-𝑘), 0)) (rpnnen2lem1 14987). This is an infinite sum of real numbers (rpnnen2lem2 14988), and since 𝐴 ⊆ 𝐵 implies (𝐹‘𝐴) ≤ (𝐹‘𝐵) (rpnnen2lem4 14990) and (𝐹‘ℕ) converges to 1 / 2 (rpnnen2lem3 14989) by geoisum1 14654, the sum is convergent to some real (rpnnen2lem5 14991 and rpnnen2lem6 14992) by the comparison test for convergence cvgcmp 14592. The comparison test also tells us that 𝐴 ⊆ 𝐵 implies Σ(𝐹‘𝐴) ≤ Σ(𝐹‘𝐵) (rpnnen2lem7 14993). Putting it all together, if we have two sets 𝑥 ≠ 𝑦, there must differ somewhere, and so there must be an 𝑚 such that ∀𝑛 < 𝑚(𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝑦) but 𝑚 ∈ (𝑥 ∖ 𝑦) or vice versa. In this case, we split off the first 𝑚 − 1 terms (rpnnen2lem8 14994) and cancel them (rpnnen2lem10 14996), since these are the same for both sets. For the remaining terms, we use the subset property to establish that Σ(𝐹‘𝑦) ≤ Σ(𝐹‘(ℕ ∖ {𝑚})) and Σ(𝐹‘{𝑚}) ≤ Σ(𝐹‘𝑥) (where these sums are only over (ℤ≥‘𝑚)), and since Σ(𝐹‘(ℕ ∖ {𝑚})) = (3↑-𝑚) / 2 (rpnnen2lem9 14995) and Σ(𝐹‘{𝑚}) = (3↑-𝑚), we establish that Σ(𝐹‘𝑦) < Σ(𝐹‘𝑥) (rpnnen2lem11 14997) so that they must be different. By contraposition (rpnnen2lem12 14998), we find that this map is an injection. (Contributed by Mario Carneiro, 13-May-2013.) (Proof shortened by Mario Carneiro, 30-Apr-2014.) (Revised by NM, 17-Aug-2021.) |
⊢ 𝒫 ℕ ≼ (0[,]1) | ||
Theorem | rpnnen 15000 | The cardinality of the continuum is the same as the powerset of ω. This is a stronger statement than ruc 15016, which only asserts that ℝ is uncountable, i.e. has a cardinality larger than ω. The main proof is in two parts, rpnnen1 11858 and rpnnen2 14999, each showing an injection in one direction, and this last part uses sbth 8121 to prove that the sets are equinumerous. By constructing explicit injections, we avoid the use of AC. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ ℝ ≈ 𝒫 ℕ |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |