Home Metamath Proof ExplorerTheorem List (p. 143 of 429) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27903) Hilbert Space Explorer (27904-29428) Users' Mathboxes (29429-42879)

Theorem List for Metamath Proof Explorer - 14201-14300   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremsqrtmsqd 14201 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴)

Theoremsqrtsqd 14202 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘(𝐴↑2)) = 𝐴)

Theoremsqrtge0d 14203 The square root of a nonnegative real is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → 0 ≤ (√‘𝐴))

Theoremsqrtnegd 14204 The square root of a negative number. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘-𝐴) = (i · (√‘𝐴)))

Theoremabsidd 14205 A nonnegative number is its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (abs‘𝐴) = 𝐴)

Theoremsqrtdivd 14206 Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))

Theoremsqrtmuld 14207 Square root distributes over multiplication. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)))

Theoremsqrtsq2d 14208 Relationship between square root and squares. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → ((√‘𝐴) = 𝐵𝐴 = (𝐵↑2)))

Theoremsqrtled 14209 Square root is monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (𝐴𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵)))

Theoremsqrtltd 14210 Square root is strictly monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵)))

Theoremsqr11d 14211 The square root function is one-to-one. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)    &   (𝜑 → (√‘𝐴) = (√‘𝐵))       (𝜑𝐴 = 𝐵)

Theoremabsltd 14212 Absolute value and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵)))

Theoremabsled 14213 Absolute value and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))

Theoremabssubge0d 14214 Absolute value of a nonnegative difference. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (abs‘(𝐵𝐴)) = (𝐵𝐴))

Theoremabssuble0d 14215 Absolute value of a nonpositive difference. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (abs‘(𝐴𝐵)) = (𝐵𝐴))

Theoremabsdifltd 14216 The absolute value of a difference and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((abs‘(𝐴𝐵)) < 𝐶 ↔ ((𝐵𝐶) < 𝐴𝐴 < (𝐵 + 𝐶))))

Theoremabsdifled 14217 The absolute value of a difference and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((abs‘(𝐴𝐵)) ≤ 𝐶 ↔ ((𝐵𝐶) ≤ 𝐴𝐴 ≤ (𝐵 + 𝐶))))

Theoremicodiamlt 14218 Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))

Theoremabscld 14219 Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘𝐴) ∈ ℝ)

Theoremsqrtcld 14220 Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (√‘𝐴) ∈ ℂ)

Theoremsqrtrege0d 14221 The real part of the square root function is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → 0 ≤ (ℜ‘(√‘𝐴)))

Theoremsqsqrtd 14222 Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((√‘𝐴)↑2) = 𝐴)

Theoremmsqsqrtd 14223 Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((√‘𝐴) · (√‘𝐴)) = 𝐴)

Theoremsqr00d 14224 A square root is zero iff its argument is 0. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (√‘𝐴) = 0)       (𝜑𝐴 = 0)

Theoremabsvalsqd 14225 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))

Theoremabsvalsq2d 14226 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))

Theoremabsge0d 14227 Absolute value is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → 0 ≤ (abs‘𝐴))

Theoremabsval2d 14228 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))

Theoremabs00d 14229 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) = 0)       (𝜑𝐴 = 0)

Theoremabsne0d 14230 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (abs‘𝐴) ≠ 0)

Theoremabsrpcld 14231 The absolute value of a nonzero number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (abs‘𝐴) ∈ ℝ+)

Theoremabsnegd 14232 Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘-𝐴) = (abs‘𝐴))

Theoremabscjd 14233 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴))

Theoremreleabsd 14234 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘𝐴) ≤ (abs‘𝐴))

Theoremabsexpd 14235 Absolute value of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))

Theoremabssubd 14236 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))

Theoremabsmuld 14237 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))

Theoremabsdivd 14238 Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)       (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))

Theoremabstrid 14239 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))

Theoremabs2difd 14240 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))

Theoremabs2dif2d 14241 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))

Theoremabs2difabsd 14242 Absolute value of difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))

Theoremabs3difd 14243 Absolute value of differences around common element. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))

Theoremabs3lemd 14244 Lemma involving absolute value of differences. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑 → (abs‘(𝐴𝐶)) < (𝐷 / 2))    &   (𝜑 → (abs‘(𝐶𝐵)) < (𝐷 / 2))       (𝜑 → (abs‘(𝐴𝐵)) < 𝐷)

5.10  Elementary limits and convergence

5.10.1  Superior limit (lim sup)

Syntaxclsp 14245 Extend class notation to include the limsup function.
class lim sup

Definitiondf-limsup 14246* Define the superior limit of an infinite sequence of extended real numbers. Definition 12-4.1 of [Gleason] p. 175. See limsupval 14249 for its value. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 11-Sep-2020.)
lim sup = (𝑥 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))

Theoremlimsupgord 14247 Ordering property of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))

Theoremlimsupcl 14248 Closure of the superior limit. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2020.)
(𝐹𝑉 → (lim sup‘𝐹) ∈ ℝ*)

Theoremlimsupval 14249* The superior limit of an infinite sequence 𝐹 of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of 𝐹. Definition 12-4.1 of [Gleason] p. 175. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2014.)
𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))       (𝐹𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))

Theoremlimsupgf 14250* Closure of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))       𝐺:ℝ⟶ℝ*

Theoremlimsupgval 14251* Value of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))       (𝑀 ∈ ℝ → (𝐺𝑀) = sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ))

Theoremlimsupgle 14252* The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))       (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))

Theoremlimsuple 14253* The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))       ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗)))

Theoremlimsuplt 14254* The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))       ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺𝑗) < 𝐴))

Theoremlimsupval2 14255* The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))    &   (𝜑𝐹𝑉)    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑 → sup(𝐴, ℝ*, < ) = +∞)       (𝜑 → (lim sup‘𝐹) = inf((𝐺𝐴), ℝ*, < ))

Theoremlimsupgre 14256* If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))    &   𝑍 = (ℤ𝑀)       ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺:ℝ⟶ℝ)

Theoremlimsupbnd1 14257* If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence 1 / 𝑛 which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
(𝜑𝐵 ⊆ ℝ)    &   (𝜑𝐹:𝐵⟶ℝ*)    &   (𝜑𝐴 ∈ ℝ*)    &   (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))       (𝜑 → (lim sup‘𝐹) ≤ 𝐴)

Theoremlimsupbnd2 14258* If a sequence is eventually greater than 𝐴, then the limsup is also greater than 𝐴. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
(𝜑𝐵 ⊆ ℝ)    &   (𝜑𝐹:𝐵⟶ℝ*)    &   (𝜑𝐴 ∈ ℝ*)    &   (𝜑 → sup(𝐵, ℝ*, < ) = +∞)    &   (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗𝐴 ≤ (𝐹𝑗)))       (𝜑𝐴 ≤ (lim sup‘𝐹))

5.10.2  Limits

Syntaxcli 14259 Extend class notation with convergence relation for limits.
class

Syntaxcrli 14260 Extend class notation with real convergence relation for limits.
class 𝑟

Syntaxco1 14261 Extend class notation with the set of all eventually bounded functions.
class 𝑂(1)

Syntaxclo1 14262 Extend class notation with the set of all eventually upper bounded functions.
class ≤𝑂(1)

Definitiondf-clim 14263* Define the limit relation for complex number sequences. See clim 14269 for its relational expression. (Contributed by NM, 28-Aug-2005.)
⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}

Definitiondf-rlim 14264* Define the limit relation for partial functions on the reals. See rlim 14270 for its relational expression. (Contributed by Mario Carneiro, 16-Sep-2014.)
𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))}

Definitiondf-o1 14265* Define the set of eventually bounded functions. We don't bother to build the full conception of big-O notation, because we can represent any big-O in terms of 𝑂(1) and division, and any little-O in terms of a limit and division. We could also use limsup for this, but it only works on integer sequences, while this will work for real sequences or integer sequences. (Contributed by Mario Carneiro, 15-Sep-2014.)
𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}

Definitiondf-lo1 14266* Define the set of eventually upper bounded real functions. This fills a gap in 𝑂(1) coverage, to express statements like 𝑓(𝑥) ≤ 𝑔(𝑥) + 𝑂(𝑥) via (𝑥 ∈ ℝ+ ↦ (𝑓(𝑥) − 𝑔(𝑥)) / 𝑥) ∈ ≤𝑂(1). (Contributed by Mario Carneiro, 25-May-2016.)
≤𝑂(1) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚}

Theoremclimrel 14267 The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Rel ⇝

Theoremrlimrel 14268 The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.)
Rel ⇝𝑟

Theoremclim 14269* Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑗 such that the absolute difference of any later complex number in the sequence and the limit is less than 𝑥. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝜑𝐹𝑉)    &   ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))

Theoremrlim 14270* Express the predicate: The limit of complex number function 𝐹 is 𝐶, or 𝐹 converges to 𝐶, in the real sense. This means that for any real 𝑥, no matter how small, there always exists a number 𝑦 such that the absolute difference of any number in the function beyond 𝑦 and the limit is less than 𝑥. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℝ)    &   ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝐵)       (𝜑 → (𝐹𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))))

Theoremrlim2 14271* Rewrite rlim 14270 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
(𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))

Theoremrlim2lt 14272* Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.)
(𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))

Theoremrlim3 14273* Restrict the range of the domain bound to reals greater than some 𝐷 ∈ ℝ. (Contributed by Mario Carneiro, 16-Sep-2014.)
(𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℝ)       (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))

Theoremclimcl 14274 Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐹𝐴𝐴 ∈ ℂ)

Theoremrlimpm 14275 Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
(𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))

Theoremrlimf 14276 Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
(𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)

Theoremrlimss 14277 Domain closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
(𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)

Theoremrlimcl 14278 Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐹𝑟 𝐴𝐴 ∈ ℂ)

Theoremclim2 14279* Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 14269. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))

Theoremclim2c 14280* Express the predicate 𝐹 converges to 𝐴. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐴 ∈ ℂ)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → (𝐹𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝑥))

Theoremclim0 14281* Express the predicate 𝐹 converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘𝐵) < 𝑥)))

Theoremclim0c 14282* Express the predicate 𝐹 converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))

Theoremrlim0 14283* Express the predicate 𝐵(𝑧) converges to 0. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
(𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘𝐵) < 𝑥)))

Theoremrlim0lt 14284* Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
(𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))

Theoremclimi 14285* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶 ∈ ℝ+)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐹𝐴)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝐶))

Theoremclimi2 14286* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶 ∈ ℝ+)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐹𝐴)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝐶)

Theoremclimi0 14287* Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶 ∈ ℝ+)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐹 ⇝ 0)       (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)

Theoremrlimi 14288* Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.)
(𝜑 → ∀𝑧𝐴 𝐵𝑉)    &   (𝜑𝑅 ∈ ℝ+)    &   (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))

Theoremrlimi2 14289* Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016.)
(𝜑 → ∀𝑧𝐴 𝐵𝑉)    &   (𝜑𝑅 ∈ ℝ+)    &   (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)    &   (𝜑𝐷 ∈ ℝ)       (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))

Theoremello1 14290* Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
(𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))

Theoremello12 14291* Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))

Theoremello12r 14292* Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
(((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (𝐹𝑥) ≤ 𝑀)) → 𝐹 ∈ ≤𝑂(1))

Theoremlo1f 14293 An eventually upper bounded function is a function. (Contributed by Mario Carneiro, 26-May-2016.)
(𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)

Theoremlo1dm 14294 An eventually upper bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 26-May-2016.)
(𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)

Theoremlo1bdd 14295* The defining property of an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))

Theoremello1mpt 14296* Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
(𝜑𝐴 ⊆ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)       (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))

Theoremello1mpt2 14297* Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
(𝜑𝐴 ⊆ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))

Theoremello1d 14298* Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
(𝜑𝐴 ⊆ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝑀 ∈ ℝ)    &   ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵𝑀)       (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))

Theoremlo1bdd2 14299* If an eventually bounded function is bounded on every interval 𝐴 ∩ (-∞, 𝑦) by a function 𝑀(𝑦), then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))    &   ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)    &   (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)       (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)

Theoremlo1bddrp 14300* Refine o1bdd2 14316 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))    &   ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)    &   (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)       (𝜑 → ∃𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
 Copyright terms: Public domain < Previous  Next >