![]() |
Metamath
Proof Explorer Theorem List (p. 14 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 3an1rsOLD 1301 | Obsolete version of 3an1rs 1312 as of 14-Apr-2022. (Contributed by NM, 16-Dec-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒) → 𝜏) | ||
Theorem | 3imp1 1302 | Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | 3impd 1303 | Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | ||
Theorem | 3imp2 1304 | Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | ||
Theorem | 3exp1 1305 | Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | 3expd 1306 | Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | 3exp2 1307 | Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp5o 1308 | A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp516 1309 | A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp520 1310 | A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | 3impexp 1311 | Version of impexp 461 for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) | ||
Theorem | 3an1rs 1312 | Swap conjuncts. (Contributed by NM, 16-Dec-2007.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒) → 𝜏) | ||
Theorem | 3anassrs 1313 | Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | 3an4anass 1314 | Associative law for four conjunctions with a triple conjunction. (Contributed by Alexander van der Vekens, 24-Jun-2018.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | ||
Theorem | ad4ant13 1315 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) | ||
Theorem | ad4ant13OLD 1316 | Obsolete proof of ad4ant13 1315 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) | ||
Theorem | ad4ant14 1317 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒) | ||
Theorem | ad4ant14OLD 1318 | Obsolete version of ad4ant14 1317 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒) | ||
Theorem | ad4ant123 1319 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜃) | ||
Theorem | ad4ant123OLD 1320 | Obsolete version of ad4ant123 1319 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜃) | ||
Theorem | ad4ant124 1321 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃) | ||
Theorem | ad4ant124OLD 1322 | Obsolete version of ad4ant124 1321 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃) | ||
Theorem | ad4ant134 1323 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | ad4ant134OLD 1324 | Obsolete version of ad4ant134 1323 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | ad4ant23 1325 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) | ||
Theorem | ad4ant23OLD 1326 | Obsolete version of ad4ant23 1325 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) | ||
Theorem | ad4ant24 1327 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) | ||
Theorem | ad4ant24OLD 1328 | Obsolete version of ad4ant24 1327 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) | ||
Theorem | ad4ant234 1329 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | ad4ant234OLD 1330 | Obsolete version of ad4ant234 1329 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant12 1331 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜒) | ||
Theorem | ad5ant13 1332 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) | ||
Theorem | ad5ant13OLD 1333 | Obsolete version of ad5ant13 1332 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) | ||
Theorem | ad5ant14 1334 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) | ||
Theorem | ad5ant14OLD 1335 | Obsolete version of ad5ant14 1334 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) | ||
Theorem | ad5ant15 1336 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) | ||
Theorem | ad5ant15OLD 1337 | Obsolete proof of ad5ant15 1336 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) | ||
Theorem | ad5ant23 1338 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) | ||
Theorem | ad5ant23OLD 1339 | Obsolete version of ad5ant23 1338 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) | ||
Theorem | ad5ant24 1340 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) | ||
Theorem | ad5ant24OLD 1341 | Obsolete version of ad5ant24 1340 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) | ||
Theorem | ad5ant25 1342 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) | ||
Theorem | ad5ant25OLD 1343 | Obsolete version of ad5ant25 1342 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) | ||
Theorem | ad5ant245 1344 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant245OLD 1345 | Obsolete version of ad5ant245 1344 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant234 1346 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant234OLD 1347 | Obsolete version of ad5ant234 1346 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant235 1348 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant235OLD 1349 | Obsolete version of ad5ant235 1348 as of 14-Apr-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant123 1350 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant124 1351 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant125 1352 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant134 1353 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant135 1354 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant145 1355 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant1345 1356 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | ad5ant2345 1357 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((((𝜂 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | 3adant1l 1358 | Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | 3adant1r 1359 | Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | 3adant2l 1360 | Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | 3adant2r 1361 | Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) | ||
Theorem | 3adant3l 1362 | Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) | ||
Theorem | 3adant3r 1363 | Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) | ||
Theorem | syl12anc 1364 | Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | syl21anc 1365 | Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | syl3anc 1366 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | syl22anc 1367 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl13anc 1368 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl31anc 1369 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl112anc 1370 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl121anc 1371 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl211anc 1372 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl23anc 1373 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl32anc 1374 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl122anc 1375 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl212anc 1376 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl221anc 1377 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl113anc 1378 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl131anc 1379 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl311anc 1380 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl33anc 1381 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl222anc 1382 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl123anc 1383 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl132anc 1384 | Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl213anc 1385 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl231anc 1386 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl312anc 1387 | Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl321anc 1388 | Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl133anc 1389 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl313anc 1390 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl331anc 1391 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ 𝜎) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl223anc 1392 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl232anc 1393 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl322anc 1394 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl233anc 1395 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) ⇒ ⊢ (𝜑 → 𝜇) | ||
Theorem | syl323anc 1396 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) ⇒ ⊢ (𝜑 → 𝜇) | ||
Theorem | syl332anc 1397 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) ⇒ ⊢ (𝜑 → 𝜇) | ||
Theorem | syl333anc 1398 | A syllogism inference combined with contraction. (Contributed by NM, 10-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (𝜑 → 𝜇) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌 ∧ 𝜇)) → 𝜆) ⇒ ⊢ (𝜑 → 𝜆) | ||
Theorem | syl3an1 1399 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an2 1400 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜑 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |