![]() |
Metamath
Proof Explorer Theorem List (p. 121 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nltmnf 12001 | No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.) |
⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | ||
Theorem | pnfge 12002 | Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | ||
Theorem | xnn0n0n1ge2b 12003 | An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.) |
⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | ||
Theorem | 0lepnf 12004 | 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 0 ≤ +∞ | ||
Theorem | xnn0ge0 12005 | An extended nonnegative integer is greater than or equal to 0. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Revised by AV, 10-Dec-2020.) |
⊢ (𝑁 ∈ ℕ0* → 0 ≤ 𝑁) | ||
Theorem | nn0pnfge0OLD 12006 | Obsolete version of xnn0ge0 12005 as of 24-Oct-2021. If a number is a nonnegative integer or positive infinity, it is greater than or equal to 0. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → 0 ≤ 𝑁) | ||
Theorem | mnfle 12007 | Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | ||
Theorem | xrltnsym 12008 | Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | ||
Theorem | xrltnsym2 12009 | 'Less than' is antisymmetric and irreflexive for extended reals. (Contributed by NM, 6-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ (𝐴 < 𝐵 ∧ 𝐵 < 𝐴)) | ||
Theorem | xrlttri 12010 | Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri 10048 or axlttri 10147. (Contributed by NM, 14-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | xrlttr 12011 | Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | xrltso 12012 | 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
⊢ < Or ℝ* | ||
Theorem | xrlttri2 12013 | Trichotomy law for 'less than' for extended reals. (Contributed by NM, 10-Dec-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | xrlttri3 12014 | Trichotomy law for 'less than' for extended reals. (Contributed by NM, 9-Feb-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | ||
Theorem | xrleloe 12015 | 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | xrleltne 12016 | 'Less than or equal to' implies 'less than' is not 'equals', for extended reals. (Contributed by NM, 9-Feb-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) | ||
Theorem | xrltlen 12017 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
Theorem | dfle2 12018 | Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) | ||
Theorem | dflt2 12019 | Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
⊢ < = ( ≤ ∖ I ) | ||
Theorem | xrltle 12020 | 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | ||
Theorem | xrleid 12021 | 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.) |
⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | ||
Theorem | xrletri 12022 | Trichotomy law for extended reals. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
Theorem | xrletri3 12023 | Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | ||
Theorem | xrletrid 12024 | Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | xrlelttr 12025 | Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | xrltletr 12026 | Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | xrletr 12027 | Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | ||
Theorem | xrlttrd 12028 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
Theorem | xrlelttrd 12029 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
Theorem | xrltletrd 12030 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
Theorem | xrletrd 12031 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) | ||
Theorem | xrltne 12032 | 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | ||
Theorem | nltpnft 12033 | An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | ||
Theorem | xgepnf 12034 | An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ 𝐴 = +∞)) | ||
Theorem | ngtmnft 12035 | An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | ||
Theorem | xlemnf 12036 | An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ 𝐴 = -∞)) | ||
Theorem | xrrebnd 12037 | An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) | ||
Theorem | xrre 12038 | A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | ||
Theorem | xrre2 12039 | An extended real between two others is real. (Contributed by NM, 6-Feb-2007.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) | ||
Theorem | xrre3 12040 | A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 ∈ ℝ) | ||
Theorem | ge0gtmnf 12041 | A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) | ||
Theorem | ge0nemnf 12042 | A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) | ||
Theorem | xrrege0 12043 | A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | ||
Theorem | xrmax1 12044 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | xrmax2 12045 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | xrmin1 12046 | The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
Theorem | xrmin2 12047 | The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
Theorem | xrmaxeq 12048 | The maximum of two extended reals is equal to the first if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐴) | ||
Theorem | xrmineq 12049 | The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) | ||
Theorem | xrmaxlt 12050 | Two ways of saying the maximum of two extended reals is less than a third. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) | ||
Theorem | xrltmin 12051 | Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) | ||
Theorem | xrmaxle 12052 | Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) | ||
Theorem | xrlemin 12053 | Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) | ||
Theorem | max1 12054 | A number is less than or equal to the maximum of it and another. See also max1ALT 12055. (Contributed by NM, 3-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | max1ALT 12055 | A number is less than or equal to the maximum of it and another. This version of max1 12054 omits the 𝐵 ∈ ℝ antecedent. Although it doesn't exploit undefined behavior, it is still considered poor style, and the use of max1 12054 is preferred. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 3-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | max2 12056 | A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | 2resupmax 12057 | The supremum of two real numbers is the maximum of these two numbers. (Contributed by AV, 8-Jun-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | min1 12058 | The minimum of two numbers is less than or equal to the first. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
Theorem | min2 12059 | The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
Theorem | maxle 12060 | Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by NM, 29-Sep-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) | ||
Theorem | lemin 12061 | Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) | ||
Theorem | maxlt 12062 | Two ways of saying the maximum of two numbers is less than a third. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) | ||
Theorem | ltmin 12063 | Two ways of saying a number is less than the minimum of two others. (Contributed by NM, 1-Sep-2006.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) | ||
Theorem | lemaxle 12064 | A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021.) |
⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) | ||
Theorem | max0sub 12065 | Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014.) |
⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) | ||
Theorem | ifle 12066 | An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) | ||
Theorem | z2ge 12067* | There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) | ||
Theorem | qbtwnre 12068* | The rational numbers are dense in ℝ: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
Theorem | qbtwnxr 12069* | The rational numbers are dense in ℝ*: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
Theorem | qsqueeze 12070* | If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) | ||
Theorem | qextltlem 12071* | Lemma for qextlt 12072 and qextle . (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) | ||
Theorem | qextlt 12072* | An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) | ||
Theorem | qextle 12073* | An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) | ||
Theorem | xralrple 12074* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))) | ||
Theorem | alrple 12075* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))) | ||
Theorem | xnegeq 12076 | Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | ||
Theorem | xnegex 12077 | A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ -𝑒𝐴 ∈ V | ||
Theorem | xnegpnf 12078 | Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
⊢ -𝑒+∞ = -∞ | ||
Theorem | xnegmnf 12079 | Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
⊢ -𝑒-∞ = +∞ | ||
Theorem | rexneg 12080 | Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | ||
Theorem | xneg0 12081 | The negative of zero. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ -𝑒0 = 0 | ||
Theorem | xnegcl 12082 | Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | ||
Theorem | xnegneg 12083 | Extended real version of negneg 10369. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) | ||
Theorem | xneg11 12084 | Extended real version of neg11 10370. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | xltnegi 12085 | Forward direction of xltneg 12086. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴) | ||
Theorem | xltneg 12086 | Extended real version of ltneg 10566. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴)) | ||
Theorem | xleneg 12087 | Extended real version of leneg 10569. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴)) | ||
Theorem | xlt0neg1 12088 | Extended real version of lt0neg1 10572. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴)) | ||
Theorem | xlt0neg2 12089 | Extended real version of lt0neg2 10573. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (0 < 𝐴 ↔ -𝑒𝐴 < 0)) | ||
Theorem | xle0neg1 12090 | Extended real version of le0neg1 10574. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ 0 ↔ 0 ≤ -𝑒𝐴)) | ||
Theorem | xle0neg2 12091 | Extended real version of le0neg2 10575. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ (𝐴 ∈ ℝ* → (0 ≤ 𝐴 ↔ -𝑒𝐴 ≤ 0)) | ||
Theorem | xaddval 12092 | Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))) | ||
Theorem | xaddf 12093 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ +𝑒 :(ℝ* × ℝ*)⟶ℝ* | ||
Theorem | xmulval 12094 | Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | ||
Theorem | xaddpnf1 12095 | Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) | ||
Theorem | xaddpnf2 12096 | Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) | ||
Theorem | xaddmnf1 12097 | Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞) | ||
Theorem | xaddmnf2 12098 | Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞) | ||
Theorem | pnfaddmnf 12099 | Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (+∞ +𝑒 -∞) = 0 | ||
Theorem | mnfaddpnf 12100 | Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (-∞ +𝑒 +∞) = 0 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |