![]() |
Metamath
Proof Explorer Theorem List (p. 12 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 3adant3 1101 | Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) | ||
Theorem | 3ad2ant1 1102 | Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005.) |
⊢ (𝜑 → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) | ||
Theorem | 3ad2ant2 1103 | Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005.) |
⊢ (𝜑 → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜒) | ||
Theorem | 3ad2ant3 1104 | Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005.) |
⊢ (𝜑 → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜑) → 𝜒) | ||
Theorem | simp1l 1105 | Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) | ||
Theorem | simp1r 1106 | Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | ||
Theorem | simp2l 1107 | Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | ||
Theorem | simp2r 1108 | Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | ||
Theorem | simp3l 1109 | Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜒) | ||
Theorem | simp3r 1110 | Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) | ||
Theorem | simp11 1111 | Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) | ||
Theorem | simp12 1112 | Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) | ||
Theorem | simp13 1113 | Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜒) | ||
Theorem | simp21 1114 | Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) | ||
Theorem | simp22 1115 | Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜒) | ||
Theorem | simp23 1116 | Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜃) | ||
Theorem | simp31 1117 | Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜒) | ||
Theorem | simp32 1118 | Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜃) | ||
Theorem | simp33 1119 | Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜏) | ||
Theorem | simpll1 1120 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) | ||
Theorem | simpll2 1121 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) | ||
Theorem | simpll3 1122 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) | ||
Theorem | simplr1 1123 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) | ||
Theorem | simplr2 1124 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) | ||
Theorem | simplr3 1125 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) | ||
Theorem | simprl1 1126 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) | ||
Theorem | simprl2 1127 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) | ||
Theorem | simprl3 1128 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) | ||
Theorem | simprr1 1129 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) | ||
Theorem | simprr2 1130 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) | ||
Theorem | simprr3 1131 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) | ||
Theorem | simpl1l 1132 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜑) | ||
Theorem | simpl1r 1133 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜓) | ||
Theorem | simpl2l 1134 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) → 𝜑) | ||
Theorem | simpl2r 1135 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) → 𝜓) | ||
Theorem | simpl3l 1136 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜑) | ||
Theorem | simpl3r 1137 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) | ||
Theorem | simpr1l 1138 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) | ||
Theorem | simpr1r 1139 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) | ||
Theorem | simpr2l 1140 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) | ||
Theorem | simpr2r 1141 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) | ||
Theorem | simpr3l 1142 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) | ||
Theorem | simpr3r 1143 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) | ||
Theorem | simp1ll 1144 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) | ||
Theorem | simp1lr 1145 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) | ||
Theorem | simp1rl 1146 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜑) | ||
Theorem | simp1rr 1147 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) | ||
Theorem | simp2ll 1148 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) | ||
Theorem | simp2lr 1149 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) | ||
Theorem | simp2rl 1150 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜑) | ||
Theorem | simp2rr 1151 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜃 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) | ||
Theorem | simp3ll 1152 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜑) | ||
Theorem | simp3lr 1153 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) | ||
Theorem | simp3rl 1154 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) | ||
Theorem | simp3rr 1155 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) | ||
Theorem | simpl11 1156 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) | ||
Theorem | simpl12 1157 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) | ||
Theorem | simpl13 1158 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜒) | ||
Theorem | simpl21 1159 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) | ||
Theorem | simpl22 1160 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) | ||
Theorem | simpl23 1161 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) | ||
Theorem | simpl31 1162 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) | ||
Theorem | simpl32 1163 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) | ||
Theorem | simpl33 1164 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) | ||
Theorem | simpr11 1165 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜑) | ||
Theorem | simpr12 1166 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜓) | ||
Theorem | simpr13 1167 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜒) | ||
Theorem | simpr21 1168 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) | ||
Theorem | simpr22 1169 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜓) | ||
Theorem | simpr23 1170 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜒) | ||
Theorem | simpr31 1171 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) | ||
Theorem | simpr32 1172 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) | ||
Theorem | simpr33 1173 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) | ||
Theorem | simp1l1 1174 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) | ||
Theorem | simp1l2 1175 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) | ||
Theorem | simp1l3 1176 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) | ||
Theorem | simp1r1 1177 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏 ∧ 𝜂) → 𝜑) | ||
Theorem | simp1r2 1178 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏 ∧ 𝜂) → 𝜓) | ||
Theorem | simp1r3 1179 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏 ∧ 𝜂) → 𝜒) | ||
Theorem | simp2l1 1180 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜑) | ||
Theorem | simp2l2 1181 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜓) | ||
Theorem | simp2l3 1182 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜒) | ||
Theorem | simp2r1 1183 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) | ||
Theorem | simp2r2 1184 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) | ||
Theorem | simp2r3 1185 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) | ||
Theorem | simp3l1 1186 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) | ||
Theorem | simp3l2 1187 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) | ||
Theorem | simp3l3 1188 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) | ||
Theorem | simp3r1 1189 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) | ||
Theorem | simp3r2 1190 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) | ||
Theorem | simp3r3 1191 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) | ||
Theorem | simp11l 1192 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) | ||
Theorem | simp11r 1193 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) | ||
Theorem | simp12l 1194 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) | ||
Theorem | simp12r 1195 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) | ||
Theorem | simp13l 1196 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜑) | ||
Theorem | simp13r 1197 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) | ||
Theorem | simp21l 1198 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜑) | ||
Theorem | simp21r 1199 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) | ||
Theorem | simp22l 1200 | Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜑) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |